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Fig. II-I Typical Initial Multiple Hollow Fibers. (100X)

Fig. 11-2 Typical Hollow Fibers Made Individually. (154X)
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Fig. 11-6 Straightening Wet Fiber Hank.
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Fig. II-7 One Side of the Tandem Pressure Molding Press.
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Abstract

A program to evaluate the improvement in bulk properties obtained

by utilizing hollow glass fibers as the reinforcing material for glass-plastic

composites was conducted. Controlled fabrication of fibers and uniaxially
stiffened composites was demonstrated. Mechanical, electrical and physical

properties were determined experimentally. Mechanical performance was

defined analytically. The hollow glass fiber composites were shown to have

improved structural efficiency for applications where stiffness or compres-

sive strength is the governing structural criterion.
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I. Summary and Conclusions

The program described in this report was directed at a quantitative
evaluation df the bulk properties of hollow glass fiber reinforced plastic
composites, and a comparison of these properties with those of solid glass-
plastic composites. The program included the development and standardi-
zation of fabrication and test techniques and an experimental and analytical
determination of composite material properties. The program resulted in
the definition of mechanical, acoustical, electrical and physical properties
of this material as a function of fiber geometry, and in the demonstration of
improved structural efficiency for the hollow fiber composites.

In particular the techniques for drawing single hollow glass filaments
were improved to yield a product of controlled geometry suitable for material
evaluation. Toward the close of the contract period, a new source of hollow
glass fibers became available. The Pittsburgh Plate Glass Company supplied
multiple filament rovings for evaluation under this program. A technique for
fabricating uniaxially stiffened composite test specimens, utilizing the avail-
able fibers, was developed and utilized to prepare mechanical and electrical
property test specimens. Testing techniques were standardized and applied
to the determination of static compression and bending properties, dynamic
bending properties and electrical properties including evaluation of dielectric
constant and strength, dissipation factor and D-C insulation resistance.
Analytical programs were performed to evaluate elastic constants, acoustical
properties and structui-al efficiency of the hollow glass fibers.

The principal results and conclusions of the study are:

1. Hollow fiber composites demonstrate improved structural efficiency
for applications where stiffness or compressive strength is the governing struc-
tural criterion.

2. Specimens lighter than water (0. 82 g/cc) have demonstrated axial
compression strength to density ratios as high as 2. 6 x 106 inches (average of
13 tests was 2. 3 x 106 inches).

3. Hollow glass fibers can be successfully manufactured in diameters
as low as . 0010" and with ratios of inside radius to outside radius as high as
0.88.

4. Compressive strength of hollow fiber composites transverse to the
fiber direction are lower than the strength of solid fiber composites for ratios
of fiber inside to outside radius greater than 0. 5.

5. Tensile strength of individual fibers is very sensitive to the fiber
geometry in the range tested. Strength decreases as fiber diameter increases
and increases as fiber hollowness increases.



6. Electrical properties of the material are highly anisotropic and
are relativqly insensitive to humidity.

7. Dielectric constant decreases considerably with increasing ratio
of inner to outer fiber radii.

8. Four of the five elastic constants necessary to describe the material
have been evaluated analytically.

9. The longitudinal modulus of elasticity of hollow glass fiber com-
popites is essentially the weighted average of thc constituent moduli.

10. Wave velocities for large wavelength disturbances have been
determined analytically.
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II. Fabrication

The methods used in fabricating the hollow fiber composites are
described below along with a summary of the fiber fabrication program.

A. Fiber fabrication

The fibers used in this program varied from the initial single filament
drawn from a tube by General Electric's Lamp Glass Department to the cur-
rent multiple filament strands produced by the Pittsburgh Plate Glass Co.
General Electric's Lamp Glass Department's first fibers were made nearly

three years ago by attenuating a single hollow tube to a diameter of about
.0035". Attempts at manufacturing multiple fibers by this method proved
more difficult than expected. Although a small quantity of 35 fiber rovings
was drawn, the individual fibers proved to be non-uniform in size and hollow-
ness and generally inferior to those drawn individually.

Process improvements were made, however, resulting in smaller
diameter fibers with extremely thin walls by the single fiber process. This
process was used during the past year to produce a large quantity of fibers in
a range of fiber sizes with varying degrees of hollowness for this program.
The fibers were of exceptional quality and provided a means for experimental
correlation with theoretical predictions.

A new process developed by the Pittsburgh Plate Glass Co. has made
available a filament windable hollow fiber roving containing up to 1000 fibers.
This new material makes possible for the first time, the fabrication of large
shapes from hollow fibers.

1. Process development

Prior to this present contract, hollow fibers made of E-glass and

quartz having outside diameters of 6 and 9 mils and having wall thicknesses
of I to 2 mils had been drawn successfully by the Lamp Glass Department of
the General Electric Company. Since the initial attempt at making hollow
fibers had been so successful, it was believed that the simultaneous drawing
of a great number of hollow fibers, say 30 to 50, would be relatively simple.

It was therefore planned initially to draw 35 fibers at a time. These
fibers were to have outside diameters of .006", .002" and .0007" with wall

thicknesses varying from . 0015" to . 0002". By varying the outside diameter,
the overall size effect was to be evaluated. The effect of varying the wall
thickness for a given constant outside diameter was to be evaluated on fibers
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of intermediate size: say •002" 0. D. In order to be able to compare
hollow fibers with solid fibers, the use of standard, high-strength E-
glass was felt to be desirable. The versatility of the process would be
demonstrated by also making a limited number of quartz fibers, both
hollow and solid.

The question of finish was to be evaluated during the course of the
program. Since the hollow fibers are extremely delicate, a minimum
amount of handling is desirable. The application to the fibers of a standard
finish, such as A-1100, at the end of the manufacturing process prior to
collection on a spool did not appear feasible at the time of initiation of the
program. It was therefore decided to coat the fibers initially with starch
and oil, because a finish of some kind is required both for protection of the
fiber surface and for making a bundle of fibers stick together during winding
into a roving. This starch-oil would be burnt off and A-U00 sizing applied

before the actual filament winding operation.

In order to check out the process of drawing 35 fibers simultaneously
which had not been previously tried by the Lamp Glass Department, solid
fibers were used initially. After some minor difficulties, 35 solid fibers of
. 0009 in. 0. D. were successfully drawn simultaneously and wound on a
drum. Three of these 35 fiber bundles were then re-wound on a drum.
These three bundles were then re-wound into a single end, 105-filament
roving. These rovings were wound on 4" diameter drums and shipped from
the Lamp Glass Department to the Missile and Space Division for filament
winding.

Having somewhat perfected the manufacturing process of simultaneously
drawing multiple fibers, 35 hollow fibers were then drawn. These fibers had
an outside diameter of . 002" and an inside diameter of . 0015" or less. A con-
siderable number of the multiple fibers was broken, either during the initial
drawing process or during the subsequent winding of three bundles of 35 fibers
each into a single roving. This breakage did not seem to decrease the strength
of the composite end product, but the presence of many loose filament ends
complicated the winding process. For example, it was necessary to unwind
from the inside of the spool in order to avoid having the loose ends break the
roving being wound.

The drawing process was modified several times in order to achieve
better uniformity and smaller fiber diameters. Bundles of 35 hollow fibers
having. 0009" 0. D. and having a nominal wall thickness of . 0002" were then
manufactured, and 3 of these combined into a single roving. Six pounds of
these hollow fibers and 6 pounds of the same 0. D. solid fibers were manu-
factured and shipped. Aluminum spools were substituted for the cardboard
spools used in the initial shipment. This eliminated the necessity of rewinding

4



the roving* before burning off the starch and oil finish which was applied to
all the fibers at manufacturing.

A typical photomicrograph of these hollow fibers is shown in Fig. II-1.
This figure shows a single roving, nominally consisting of 105 filaments. It
should be pointed out that the actual number of filaments in this roving was
higher than the number indicated by actual count of the fibers in the pictures.
These micrographs were made by imbedding the roving in a plastic matrix, then
cutting it and polishing it to an extremely high finish. If, during the cutting
process, a fiber broke below the surface, it would never be touched by the
polishing wheel and thus would not show up in the micrograph. The large,
vacant spaces in some of the fiber bundles of Fig. II-1 are probably filled by
such fibers which were cut below the surface. It is apparent that good control
was maintained on the 0. D. of the hollow fibers, but that the wall thickness
varied a great deal. As a matter of fact, some of the fibers are actually solid.

The variation in wall thickness of the hollow fibers may have been due
in part to the non-uniformity of the heating and drawing process of the non-
uniformity of the raw material. The raw material of the fibers, both hollow
and solid, was E-glass supplied by Owens-Corning Fiberglas Corp. Careful
testing of the raw material supplied uncovered a tendency of this glass to boil.

The boiling problem was solved by the use of special, high purity
E-glass manufactured by the Bridgeville Glass Works, Bridgeville, Pa.
(designated type 172). It has the following composition:

sio2 60%
A12 0 3  20%
CaO 7%
MgO 8%
NaO 1%
B 20 3  4%

Its general properties are

Modulus of elasticity: 10. 7 x 106 psi

Specific gravity: 2.43
Thermal expansion: 4. 2 x 10-6 per 0 C, (0-300oC)

2. 33 x 10-6 per OF, (32-482OF)
Softening point: 914 0 C

A part of the difficulty encountered in pulling 35 fibers simultaneously
may also have been due to the slight fluctuations in drawing speed and tension,
inherent in the process. Prior to the commencement of the present contract,
such difficulties were minor because only single hollow fibers had been drawn.

5
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(It is now known that greater uniformity can be achieved by drawing a single
fiber at a time.) In order to avoid the difficulties encountered with multiple
fibers, it was therefore decided to revert back to drawing individual hollow
fibers. Less breakage was encountered than with the multiple drawing pro-
cess, and the uniformity of the fibers improved considerably.

Another advantage of drawing single fibers is that the process can be
stopped when the fiber breaks without adversely affecting other fibers. If a
fiber breaks during the simultaneous drawing of 35 fibers, the process could
not be stopped because the remaining 34 fibers would also break. Therefore,
it was the practice not to stop when individual fibers broke but to let the bundle
of 35 fibers come down to a pre-determined number, say 25 to 30, before
stopping the drawing process and re-gathering all 35 fibers. This change in
the program thus permitted the production of improved fibers for test purposes
and provided the opportunity for better understanding of the new techniques
before drawing multiple hollow fibers.

The photomicrograph of Fig. 11-2 is indicative of the uniformity of
fiber dimensions produced by drawing one filament at a time. The single
filaments were wound on 6" diameter Teflon bobbins with 1/4" x 1/4" cross-
sections. Other winding techniques were studied along with alternate schemes
for shipping. Deionized water was used to wet the glass fibers after drawing,
and specimens were subsequently shipped wet from Cleveland, Ohio, to
Philadelphia, Pa. This water acted as a lubricant and protected the delicate
fibers during handling and shipping. After removal from the filament forming
machine the glass-filled bobbins were sealed with a plastic film to retain this
water until processed into samples in this laboratory. (See Fig. 11-3)

Plans were made to produce a series of fiber sizes and geometries
that would isolate the two variables, outside diameter df and ratio of inside
diameter to outside diameter, a . This group is shown below, along with
the sequence of production. A total of 150 bundles was to be produced: 15
in each of the 10 types. Planned production rate was about 15 bundles per
week.

Table of Quantities of Fiber Bundles

Produced in the Various Geometries

.80 0.67 0.50 0

.0025 15 i., ) 15 - 15 s 15

.0020 15 1*5
(Size) .0015 0015 15

.0010 15 15

7



Fig. 11-3 Bundles of Fibers Ready for Impregnation
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Water was employed as a lubricant on some of the earlier glass fibers.
It was removed by drying at 250OF overnight (15-18 hours) prior to resin
impregnation. It was thought that the water could deteriorate the glass fibers,
dissolving some of the alkali from the surface of the glass. Also, after the
water had evaporated from the glass, the resulting surface was thought not
to provide as good a coupling boundary between the glass and the resin as
could be obtained using other treatments. In order to evaluate glass fiber
surface finishes and the resultant effects on strength, the following treat-
ments were evaluated:

a. A-1100 treatment applied to the glass immediately after
forming was used as a lubricant during molding.

b. Uncoated virgin glass with resin free of coupling agent.
Water was used as a lubricant during molding.

c. Uncoated virgin glass molded with resin containing 2%
Syl Chem 90 as the coupling agent. Water was used as
a lubricant during molding.

d. Single specimen of each (a, b, and c) was also prepared
using n-heptane as a lubricant.

Tests with these sizing agents showed only slightly higher compressive
composite strengths over un-sized or untreated fibers. It was therefore
concluded that, for the purpose of this contract which was to evaluate
improvements of hollow fibers over solid ones, dry fibers would be used
throughout. This eliminated the additional process control variables,
namely quality and quantity of sizing, and therefore improved the reliability
of the conclusions drawn from the test program. The fibers, wound wet
with deionized water, were dried thoroughly prior to shipment in sealed plastic
bags. Time in shipping or storage was of no consideration since no moisturej was present.

A great deal of difficulty was experienced in making both small diameter

(df = .001") and thin walled ( cX = . 8) fibers. A large number of trial runs
had to be made, rejecting many fiber bundles, before the required quantities
of good fibers were produced. Solid fibers presented no particular manufacturing
or handling problems in the diameters considered.

Classifying a 15 bundle lot, the expected quality (based on visual inspec-
tion of fiber sizes and uniformity throughout the bundle) is 62% good, 27% fair,
and 11% poor. The one or two poor bundles were used first to check out the
impregnation process. The fair ones were impregnated and used to check out
the testing procedures. Then final measurements were made on the remaining
(9 or 10) good bundles.

9



Toward the completion of this program, a source was found which
could supply a filament-windable hollow glass fiber roving. The Pittsburgh
Plate Glass Co. manufactured several pounds of fibers . 000511 and . 00065"
diameter with a ratio of inside diameter to outside diameter of approximately
0. 67. Solid control fibers were also supplied in the same outside diameters.

The fibers were drawn 50 at a time and then rewound into rovings.
The first shipment, . 0005" diameter, was comprised of 8 ends per roving
for a total of 400 fibers. Only a light sizing was applied and hence the
roving was quite easily abraded. A later shipment of . 00065"1 diameter
fibers, wound with 20 end (1000 fibers) rovings, was treated with both
sizing and an epoxy-compatible resin. Consequently, these rovings were
easier to handle and much less susceptible to abrasion and handling damage.

B. Composite fabrication

A technique which could use the available spools of very delicate
singly wound hollow fibers was developed for the fabrication of long thin
rods suitable for mechanical and electrical testing. The rods were quite
uniform and proved to be a reliable test medium, free from major uncon-
trolled fabrication variables.

1. Process development

In an attempt to obtain initial composite test specimens expeditiously,
it was planned to wet a package of glass fibers while wound on a drum and
then transfer it to a fixture which deformed it into an oval shape. The fibers
in this oval mold were then to be impregnated with epoxy resin, the resin
cured, and the straight parts of the oval shape cut out and used as compres-
sion test specimens.

Fig. 11-4 shows the expansion device designed to mechanically deform
the circular Teflon bobbins wound with hollow fibers (ref. 4) into the oblong
shape. This was tried with both hollow and solid fibers, but the results were
very poor. Catenary action due to slack in the tightly wound fibers caused the
supposedly straight sides to bow outward and destroy the collimation of the
fibers. It was impossible to maintain a uniform shape and fiber density
throughout the "straight" portions of the oblong shape. A better technique
which produces an excellent, straight specimen up to 15" long was devised.
This technique utilized the mold shown in Fig. 11-5. The process consisted
of immersion of a glass fiber filled

10



Fig. 11-4 Expansion Device Used in an Attempt to Make

Oval Shapes Out of RingsI l
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Fig. 11-5 Molding Fixtures and Finished Specimen
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Teflon ring in water. Then a cut was made through the fibers and ring at
one point in the circumference. Stripping the wet hank of fibers from the
ring was quite simple. By gently wiping the hank between the fingers, the
cantenary effects caused by the initial winding diameter differences among
the fibers were eliminated. This procedure achieved good collimation of the
filaments (Fig. 11-6) and resulted in no measurable fiber damage. The wet
hank of fibers was then inserted into the channel-shaped section of an open
end 15" long x 1/4" wide mold. A male plunger was inserted into the mold
and the fibers dried overnight at 200 0 F. Removal of the part from the mold
after curing was assured by the application of a mold release compound during
the initial mold assembly. The resulting dried bundle of glass was tightly
bonded (conherent). This inter fiber bounding was caused by the polarity of
the water molecules which, upon removal from the glass fibers, left behind
an electrical surface charge causing the fibers to attract one another. There
also appeared to be a small degree of permanent bonding between the raw,
dry fibers. The resulting stiff structure prevented uniform resin impreg-
nation. Also, due to lack of resilience of the stiff fibers, it was impossible
to accurately control the fiber density and resin content.

Various volatile organic liquids of low dielectric constant were
evaluated to find one which would provide lubrication during the wiping
process but which would evaporate, leaving a soft, clean resilient fiber
bundle (as cotton yarn) which would completely occupy the mold cavity over
wide ranges of resin content. The solvent which appeared best in this
respect and which was accepted for this program was n-heptane. This
compound has a dielectric constant of 4. 3 compared to water of 81. 07, is
non-toxic, readily available and leaves no residue after drying. Processing
the hank of fibers was accomplished using the same technique as outlined
above, except that n-heptane was used in place of water as the solvent. A
bundle of fibers, after evaporation of the n-heptane solvent, displayed almost
no interfiber bonding and permitted thorough and uniform resin impregnation.
There were, however, still a few thin, isolated stiff areas which did not
respond to this de-bonding treatment. This procedure did permit, however,
accurate control of resin content in the finished composite, since the excess
resin was squeezed out in proportion to the plunger pressure exerted.

The lack of cohesive forces among the dried fibers when using a
non-polar solvent introduced a new problem These dry, highly mobile
fibers behaved badly during molding and displayed a tendency to float to
the top of the mold cavity. A few stray fibers wedged into the clearance

I provided for the male plunger and caused binding between the mold parts,
especially at the ends of the mold where the fibers were bent upward to

maintain their open ends above the fluid level. A number of specimens was
destroyed before the problem was resolved and steps could be taken to correct
it. The ends of the fiber were taped and tied into position with string, there-
by constraining the scraggly ends of the fiber bundles and preventing flotation

13





and binding. Care was taken not to constrict the axial flow passages around
the fibers by binding the ends too tightly.

Preparation of the samples was accomplished by placing the pre-
dried fibers and mold, at a temperature of 165 0 F, into a metal tray-like
container. This in turn was placed on a hot plate at 165 0 F in a vacuum tank.
The male plunger was shimmed up approximately 1/8" above the dried glass
bundle, and resin at 165°F was poured into the container to a level above the
dried fibers. Penetration of resin into the centers of the hollow fiber was
prevented by maintaining the exposed fiber ends above the resin level. The
tank was then sealed and evacuated for one hour. After impregnation was
completed, the mold was removed from the vacuum chamber and placed
inside a curing oven. Before curing, the mold shims were removed and
weights were added to obtain the desired molding pressure. In order to
produce specimens having a range of resin contents, the specimens were
molded under various pressures. A simple cantilever system was con-
structed and located inside the temperature-controlled curing and drying
oven (Fig. 11-7). By applying various weights to the end of the cantilever
handle, the effective molding pressure could be varied from about 1 psi
to 50 psi. The pressurizing device could accommodate two individual
molds. Fig. 11-5 shows a typical specimen after curing. The composite
then rested for one hour under the plunger pressure at a temperature
somewhat below the curing temperature to stabilize the matrix. The curing
cycle took place overnight at 200°F.

The resin system used in this work was as follows:

Resin:

100 parts Kopoxite - Koppers Chemical Company
(resorcinal diglycidal ether)

Cross -Linking Agent:

125 parts Methyl Nadic Anhydride

Toughening Agent:

25 parts EM 207 - Thiokol Chemical Company

15
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Catalyst:

1 part BDMA

(Benzyldimethlamine)
Physical properties of the resin are:

Specific gravity I. 27
Modulus of elasticity 0. 5 x 106 psi
Tensile strength 12, 500 psi
Compressive strength 17, 500 psi

Some of the good features of this resin system are low viscosity, high
impact strength, high modulus, good transparency, low shrinkage, and good
adhesion to glass.

The following is a summary of the final specimen fabrication proce-
dures listed in order of their occurrance. Minor changes were made to
simplify and improve the resulting specimens.

1. The glass fibers were drawn and wound on cardboard spools. A
solvent, de-ionized water, was used to lubricate the fibers and
prevent abrasion.

2. The fiber bundles were then dried for one hour at 200 0 F.

3. The dried bundles, were packaged in polyethylene bags and shipped
in padded cardboard boxes from Cleveland, Ohio, to the Valley
Forge, Pennsylvania, site.

4. The fiber bundles were removed from the plastic bags and soaked
in a tray containing n-heptane solvent. This softened the fiber
bundle and prevented damage from subsequent handling.

5. A cut was made radially through the wet, circular bundle and the
resulting hank was removed from the cardboard spool.

6. Fibers were axially oriented by wiping the solvent soaked fibers
with the fingers. These fibers then were allowed to dry at room
temperature for several hours.

7. Evaporation of the non-polar solvent n-heptane left the fibers free
from electric charges and completely unbonded.

8. The hank of dry fiber was dipped into a room temperature bath

17



of catalyzed resin and hand wiped with soft foam rubber pads to
assure complete impregnation and wetting of all the fiber surfaces
and improve axial orientation of the fibers.

9. The resin impregnated hank was then placed into the cavity of a
stainless steel mold. The fiber ends were tied and the plunger
was inserted to prevent floatation of the hollow fibers. Additional
liquid resin was poured into the mold to form a reservoir. Ends
of the hollow fibers always remained above the liquid level. The
entire assembly was evacuated for one hour at room temperature
to eliminate any remaining air bubbles.

10. The assembly was then removed from the vacuum chamber and
placed into an oven. A load was applied to the plunger for an ef-
fective pressure of 10 psi on the glass bundle. There it remained

at 165°F until the fibers had adequate time to settle, about one
hour. The resin remains a liquid throughout this process.

11. The oven temperature was then )aised to 200°F and the composite
I cured for 16 to 20 hours.

12. The composite rod was finally removed from the muld, dried, and
cut into test specimens.

18



III. Test

A. Physical property measurements

Measurements of density, resin content and fiber geometry were
made on the specimen before testing. The resulting values of (c, Vb, vf
and a were used to establish correlations with the experimental result•

such as strength and modulus of elasticity.

1. Specific gravity

Specific gravity of the composite, rc' was determined from three

one-inch long samples removed from the center and approximately one inch

away from each end of a long specimen.

2. Resin content

This was determined from the weight reduction of specimens after

firing in a muffle furnace at 1000OF for three hours. The resin was quickly
volatilized, however, there was no significant glass loss in the time allowad.

The equations used to transform the weight fractions, w, to volume

fractions, v, are

The average ratio of inside to outside fiber diameter is given by

e- 1 (2)

3. Photomicrographs

Samples approximately i/8"long were removed from near the center

of each molded specimen and imbedded in resin. After polishing, all samples

were scanned optically. Photomicrographs were taken of typical areas at

various magnifications.
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B. Mechanical Properties

1. Fibers

A total of 489 hollow and solid fibers was tested in tension and the
corresponding tensile strengths calculated. A regression analysis of tbne
test results showed considerable increases in strength with decreasing
fiber diameter and increasing hollowness.

Because of the specialized equipment needed for testing and optically

measuring hollow glass fibers, it was decided to utilize the service of the

nearby Philadelphia College of Textiles and Science. The tests were per-
formed under the direction of Dr. Percival Thiel and W. Wolfgang.

The following testing procedure was shown to produce good tensile

tests of the fibers.

1. Select fibers for tests randomly from each spool
of different geometry and size fibers.

2. Cut each fiber into 1. 25" lengths.

3. Cement* each fiber onto two 3/4" metal tabs, using
fine combs to maintain alignment. Each end of the

fiber extended 3/8" onto each tab, leaving 1/2" of

fiber exposed between the edges of the tabs. Care

was taken to prevent cement from entering the open
ends of the hollow fibers.

4. Dry specimens overnight before testing.

5. Pull fibers on a Scott IP-2 constant load rate, inclined

plane tensile testing machine.

6. Examine broken fibers and reject those tests having
failures near the tabs.

7. Measure cross-sectional area optically at failure ends

of the fibers. This is done directly on a Spencer ob-
jective microscope.

Table III-1 presents the results of 281 hollow fiber tests and Table

111-2 presents similar results for 208 solid fiber tests. Each fiber test

is listed according to its outside diameter, df, and the ratio cK.. The

corresponding net fiber stresses at failure are given in ksi. The results

were normally disLributed as shown in Fig. III-1.

Cement is cellulose nitrate in acetone or ether solvent.
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TABLE 111-1

Hollow Fiber Tensile Test Data

.00098 .. 43 -149 00105 .733 244 .00126 .777 214 .0 19 . 852 81

179 245 214 107
.715 136 258 227 129

174 .770 192 254 156
201 236 272 179
207 236 277 193
223 .800 293 278 .00192 .855 124
228 .00108 .712 203 334 148
245 .725 149 .001 30 .785 247 218
245 .765 118 275 232

250 158 .00133 .790 244 .865 98
269 200 244 .00196 .857 137

.770 160 .806 225 252 137
.00094 .702 78 .00119 .765 248 .00136 .795 62 170

190 250 191 .79
453 274 197 186

.00102 .686 199 .00122 .746 259 226 .00200 .860 84
.725 167 .770 93 .00140 .800 183 129

178 125 228 159
189 132 250 204
209 190 306 219
231 197 .00150 .813 212 228
251 208 •00161 .826 94 252
273 227 .00164 .829 205 .00203 .863 73
2.76 232 .00172 .837 158 103

281 243 .00175 .840 246 111

.754 300 246 287 151
.00105 .629 179 250 .00178 .842 180 156

.705 101 271 .00182 .846 125 173
253 273 223 191
205 273 .00186 .849 116 205

.725 208 .00126 .777 78 180 .00206 .864 89

.733 228 156 180 90
236 191 .00189 .849 189 96

Stresses in ksi
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TABLE III-1 (Continued)

Hollow Fiber Tensile Test Data

di c< 0; df 0C • d 4 od 0, 1- o r. df O 6
.00206 .864 135 .00217 .871 121 .00228 .877 37 .00238 .735 126 .00245 .829 90

144 122 84 134 172
166 123 86 137 .886 89
172 165 96 145 .00248 .750 102
196 256 109 .812 63 115
210 .00220 .668 102 117 .882 94 137
216 104 158 112 166

.00210 .866 41 .682 63 .00231 .659 129 126 .759 102
63 85 .667 121 .00242 .736 83 .790 120
77 136 .728 106 94
92 . 69Z 201 129 102

115 .873 90 130 133
116 103 147 138
135 .00224 .656 127 159 147
148 .688 62 .877 126 .752 117
184 72 135 .885 83

.00214 .607 62 86 195 120

.654 59 119 .00234 .718 103 .00245 .715 144
139 .705 136 .735 61 .727 97

.869 143 .768 138 109 .743 76
186 .788 55 ill 76
213 .875 106 140 83

.873 70 82 141 85
101 .00228 .658 112 146 85
158 114 .762 106 102
161 .676 122 .880 118 107

.217 .598 56 122 126 118
.612 69 .693 85 136 120
.664 160 .720 151 182 127.
.678 66 .737 82 .00238 .735 67 137

74 118 85 159
118 .780 90 92 177
138 252 102 195

.871 62 815 136 107 .759 102
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TABLE 111-2

Solid Fiber Tensile Test Data

df df df O, df df df

.00088" 83 .00116" 129 .00136" 115 .00150" 56 .00178" 123 .00242" 90

.00098 57 137 125 80 .00182 61 .00245 42
284 141 138 .00154 70 65 47

.00102 116 141 159 110 116 52
135 151 179 116 133 63

.00105 138 169 213 119 .00186 50 66
143 201 .00138 49 .00156 42 60 68
172 .00117 85 53 .00168 159 84 71
176 .00119 131 .00140 57 .00172 114 88 76
181 159 58 .00175 61 91 76
186 163 60 64 103 106
190 .00120 80 75 66 .00189 59 .00248 58

.00108 75 .00122 122 82 68 64 64
147 132 92 69 77 68
157 137 96 71 83 70
159 14Z 96 71 110 81
160 157 100 72 .00192 100 81
175 .00126 85 102 76 .00196 53 .00252 49
181 97 108 77 54 60

.00109 128 133 109 78 .00200 64 65
130 142 I22 80 .00210 56 71

.00112 74 .00130 73 150 83 .00228 51 77
115 112 .00142 56 84 59 78
129 .00132 78 70 109 .00234 53 85
134 98 .00144 54 119 72 86
139 106 65 127 91 92
141 113 78 .00178 65 .00238 65 .00256 59
150 121 100 70 .00242 57 61
161 126 106 78 57 73
162 135 .00148 87 84 57 .00259 32
185 145 99 87 61 84
231 148 101 95 63 .00262 44

.00116 113 .00136 73 103 97 69 .00270 53
115 102 I22 100 77 .00284 38

157 104 84 .00287 48
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A number of regression analyses were made using an IBM 1620
computer and introducing various types of functions.

First,' only solid fibers were considered to eliminate the variable
c< The constants were found for the equation

The resulting best-fit of the solid fiber tests was the relationship

0-2+6

0i11ra

Next, both hollow and solid fiber test data and the previously deleted
variable a( were introduced in the form

The exponent of df was rounded off to two significant figures to
somewhat simplify the function. The results of this attempt to fit all the
data points with a least-root-mean-square-error curve yielded the relation-
ship

'4

The residual sum of squares of deviation was 788, 900.

Introducing •3 into the function resulted in the equation

CC ~ Z 0.1 6 S ,7 + 3.0127<Z-0.74326<1J

The corresponding residual sum of squares of deviations of 789, 300
was slightly more than that for the 2nd order equation.

A better fit was obtained using the absolute value of do rather than
the ratio aK = do/df. This resulted in

Z5
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with a residual sum of squares of deviations of 778, 060. This equation is
plottedin Fig. 111-2 vs. %e for various values of do. It is apparent that the
net fiber strength increases with decreasing outside fiber diameter and with
increasing inside fiber diameter. This is a significant result and indicates
that estimates of performance of hollow fiber composites under tensile loads
must be revised, and that the outlook appears more promising. The problem
remaining is to improve the reliability of hollow fibers so that these higher
strengths can be utilized in actual structures.

2. Composites

Philosophy of experiment design was to compare the properties of
hollow fiber reinforced plastics with solid fiber ones. Consequently, the
testing procedures were simplified as much as possible and then frozen
very early in the program so as to eliminate as many extraneous variables
as possible. As a result of this philosophy, the test data shows the effects
of fiber geometry for comparison with the analytical predictions. Care
must be taken, however, in comparing the experimental results reported
herein with those obtained by other experimenters, because of possible
differences in testing techniques, and in fiber and specimen preparation

a. Longitudinal (axial) compression

Test specimens were cut from a long composite rod, described
earlier in this report, in three lengths: 2", 1" and 3/8", using a special
cut-off fixture to assure square, non-ragged ends. This fixture containing
a diamond cutting wheel is shown in Fig. 111-3. Tests were performed on
specimens taken from 26 difference rods. The results are presented in table
111-3. The failure stress is presented in Fig. 111-4 in the form of a strength-
density ratio as a function of the fiber radius ratio. Each data point is the
average value for a given rod and represents a number of points as shown in
Table 111-3. All data are normalized with respect to the average experimental
strength-density ratio for solid fibers. Only those test specimens which fell
within 15% of the nominal fiber volume fraction of 0. 3 were plotted. This
enables comparison with the analytically predicted strength variation as
shown by the curve of Fig. 111-4.

The net glass fiber stress O'f at failure was calculated from the total
composite stress trc at failure from the equation

Zb
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Fig. 111-3 Cut-off Fixture Used to Square Ends of Axial
Compression Specimens
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TABLE 111- 3

Axial Compression Test Data

Specimen Vb Vf Ave C ay
Designation g/cc ksi ksi lI&s,

250-10-5G .312 .214 .829 .913 45,43,45,46,45, 53 46 1.4
250-10-7G .214 .227 .843 .817 40,43, 28, 23, 24, 33,34,34 32 "1. 1
250-10-13G .312 .214 .829 .855 54,60,62,50,42,47 52 1.7
250-10-15G .266 .215 .841 .855 67, 65, 73, 77, 77, 60, 81, 68, 71, 71, 64, 78, 72, 71 71 2.3

250-6-6F .272 .425 .645 1.37 59,56,87,69,52,48,62,61,72,71,63,69 64 1.3
250-6-12F .386 .388 .607 1.42 62,83, 67, 80, 80,67,83,82,64,87,82,49 74 1.4

250-4-7G . 324 .507 .500 1. 63 89,85,100, 100, 95,100, 96, 71, 70, 70 88 1. 5

250-2-7G .251 .749 0 2.20 100, 90, 19, 60, 109, 69, 90, 104, 94, 43, 54,71 75 .95
250-2-8G .258 .742 0 2.10 38, 58, 55, 87, 100, 89, 94, 82, 74, 101,68 77 1.0

200-6-6G .340 .325 .712 1. 30 66, 55, 50, 75, 87,81,75,99,88,78, 102,77,98 79 1.7
200-6-14G . 363 .390 .622 1.35 68, 82, 86, 69, 84, 84, 83, 77, 70, 74, 88, 53 76 1.6

200-2-IG .317 .683 0 2.07 94,97, 120, 102, 82, 86, 74, 104,88,92 94 1.3
200-2-2G . 295 .705 0 1.99 70, 82, 98, 62, 108, 86, 99, 58, 77 82 1. 1
200-2-14F .296 .704 0 2. 14 120,121,117,122,122,122,120,120,128,128 122 1.6

150-6-3G .328 .355 .687 1.24 55,69,65,81,68,74,91,80,44,72,86 71 1.6
150-6-15G .282 .492 .563 1.54 72,68,78,101,95,94,108,88,90,78,92 88 1.6

150-2-13G .273 .727 0 2.08 61, 74, 78, 92, 82, 78, 98, 74, 82, 50, 40 74 1.0
150-2-14G .275 .725 0 2.03 39,68,77,34,70,58,48,84,78,43,74 61 .83

100-6-IG .390 .475 .470 2. 12 85, 86, 84, 97, 98, 100,98,99, 96, 95,89 93 1.2
100-6-12F .390 .404 .581 1.47 80,70,70,83,86,72,89,84,67,84,80,71 78 1.5

100-2-11G .284 .716 0 2.09 80,101,90,97,86,87,75,80,102,102,91,89,8 90 1.2
100-2-15G .272 .728 0 2.06 94,88,100, 105,108,104,98,95,75,74,74,72 91 1.2
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TABLE 111-3 (Continued)

Axial Compression Test Data

Ave Ave Ave Or
Specimen V V ce Ic ,M.r
Designation g/cc ksi ksi 106)h.

I-H .311 .409 .688 1.43 83, 71,77, 8.3, 80, 53 70

Z-H .203 .550 .556 1.70 27,42,44,73,35 44

3-H .370 .350 .665 1.36 81,78,106,98,110,101 96

I-S .370 .630 0 2.06 80,72,75,95,81 81
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Values used for the moduli were Eb 0.52 x 1o6 psi andEf = 10.7 x 1o6 pi.
The other quantities, vf and vb, are the volume ratios of fiber and binder
respectively, in the total composite and were determined independently for
each rod. See nomenclature sheet for a description of the terms.

Maximum values of OYf are plotted for each test in Fig. 111-5. The
net glass stress 0-f caft be visually interpreted as a measure of structural
efficiency for all test specimens without consideration of vb.

The shape of the "instability-limit" curve for low and intermediate
values of . is determined by analytical considerations derived in the
Analysis section. The exact vertical location of the curve is determined
from the test data, utilizing the criterion that all the composite tests must
fall below the micro-buckling envelope. The envelope represents the shape
os a theoretical maximum value for fiber instability.

It is not unreasonable to believe that as 0c is increased to very
high values, the failure mode will shift from micro-buckling instability to
fiber or resin shear failure. This establishes a horizontal line at the average
failure stress of the glass resin system, in this mode.

The compression tests were performed on 2", 1" and 3/8" long
specimens, and no significant difference was evident for failure stresses
of various length specimens.

There was a considerable number of deviations in the specimens
from the theoretically perfect conditions assumed in the determination of
the theoretical compressive strength envelope. For example, the ends of
the 1/4" r!!/4V c-oss-section specimens were not perfectly square. The
fibers impregnated in the composites were often twisted. Resin-rich areas
and voids throughout the cross-sections of the specimens were frequently
observed. All these factors contribute significantly to the reduction in
compressive strength from the theoretical prediction. This tends to explain
the large variations in strength evident in Fig. 111-5. It should be noted
also that, with improved quality control in the specimen fabrication and
testing procedures, more consistent compressive strengths can be expected.

b. Transverse compression

Composites reinforced with hollow fibers, although having improved

axial properties, have considerably less strength in the transverse direction.
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Fig. 111-5 Axial Compression Fiber Strength Test Data.
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This may be due to the collapse of the thin-walled tubes. Fig. M-6
shows the apparent envelope of failure stress for increasing hollowness
of the fibers. For solid fibers and those having only slight hollowness,
the horizontal line represents shear failure of the resin between the fibers.
The second curve intersecting this horizontal resin failure line represents
the model of failure whereby hollow fibers are sheared prior to resin
failure. Fig. 111-7 shows photomicrographs of these failure modes. Note
that solid fibers in the failure area shown in the upper part of the figure
remain intact, whereas, many of the hollow fibers in the lower part of the
figure have been split longitudinally.

Typical transverse compression failures are illustrated for a very
hollow fiber and a solidfiber reinforced specimen in Figs. M11-8 and 111-9-
respectively. Specimens in the photograph are aligned so that the vertical
axis approximates the direction of loading.

c. Bending test

A group of 31 rods was tested in 4-point flexure as shown in Fig. III-10
A light load 2P (about 35 pounds) was gradually applied and load-deflection
curves were made for points 0 and I during both loading and unloading. Each
rod was rotated 900 about its longitudinal axis, and the experiment was repeated.
After all 4 sides were tested in this manner, each rod was loaded to failure.
The maximum loads and failure modes were recorded.

The initial slopes (k) of 496 load-deflection curves (16 per specimen)
were obtained from the testing machine strip charts. The k values were
averaged for the loading and unloading curves and for the cases in which
opposite faces of each rod were loaded. This resulted in 4 k-values for
each rod: two for the two bending planes at each of the two measured points
0 and 1.

From the initial dimensions of each rod, the moments of inertia for
2 planes of bending were obtained. One modulus value was calculated for
each of the two planes of a rod from the equation

(~k,- k,)~

for the dimensions shown in Fig. III-10. The subscripts 0 and 1 refer to
the location of the measurement and the subscript c refers to the appropriate
bending plane. It should be noted at this point that this equation utilizes the
relative deflection between the two planes 0 and 1. This portion of the beam
is free from shear and therefore not influenced by shear deformations. The
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area is subjected to pure bending. These two values E 2 and E3 were then
averaged to give a single value E*, the best estimate for the modulus for
the specimen.

The shear andbending stresses were calculated from the equations

3

and

where A is the cross sectional area of the rod, hc is the thickness in the
bending plane and Ic is the moment of inertia in the corresponding plane.

From previous tests, the modulus of elasticity of the resin was found

to be about 0.52 x 106 psi. This value was used to calculate the modulus of the
glass reinforcement from the equation

+ E-'4
V

where the mark, +, denotes that the value is an estimate calculated from a
bending test.

Fig. III-11 shows typical bend test failures. The uppermost specimens
are solid and c increases towardthe bottom. Table 111-4 presents the re-
sults of the bending tests. The apparent modulus of the glass fibers varies con-
siderably from one specimen to another, the average value being 10. 77 x 106

psi. The values of modulus, obtained from the test, are plotted in Fig. 111-12
for various values of 0< and fiber diameter.

A regression analysis made of the data in this figure yielded the
relationship

Although this show-s a slight reduction in fiber modulus with increasing
and df, the results are certainly not conclusive. The analysis showed the
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data to be nearly random and one should conclude thatthere is probably no
correlation with fiber geometry.

d. Longitudinal tension

A great deal of difficulty was experienced in testing hollow fiber
composites in tension. The low transverse compressive strength repeatedly
caused failure in the testing machine grips. No successful tensile tests on
composites have been made to date.

The usual result of a tensile test is either a longitudinal split along
the rod or crushing the ends of the rod by the jaws of the testing machine.
The shear strength of a composite is about 4000-5000 psi which can be con-
verted into only about 2000 lb axial load. The full rod would require up to
10, 000 lb to rupture. Necking down the rod to reduce the braking load to
the limits of the grips requires the load to transfer across the fibers from the
grips to the internally located test section, resulting in a longitudinal slit.

Attempts were made to perform tensile tests by modifying the speci-
men shape byvarying the type of grips used. Slippage in the grips or shear
and tensile failures away from the test section occured, although some pro-
mise of future success was indicated by certain of the procedures.

e. Dynamic properties

Several rods were excited to vibrate in a free-free mode by supporting
them horizontally at their modal points and then suddenly releasing a force at
the center point (Fig. 111-13). This was done by severing a taut string tied to
the center of each rod. A strain gage at the anti-node of each rod was coupled
to an oscillograph which presented a time-amplitude plot of the rod vibrations
(see Figs. 111-14 and 111-15).

The initial vibrations after severing the string were of very large
amplitude and distorted with higher harmonies. These initial vibrations
soon died away, however, leaving a low small smplitude, sustained oscillation
at constant frequency. This lowest natural frequency f(n) and the ratio of the
amplitude of one peak to that of the following peak xl/x, were carefully
measured. The modulus of elasticity was then calculated from the equation

4

where /Oc is the composite density (lb/in3 ), L is overall beam length (inches)
and h is the thickness of the beam (inches).
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Test results along with other pertinent information are presented in
Table 111-5.

C. Electrical properties measurement

The dielectric constants, dielectric strengths, dissipation factors
and D. C. insulation resistance were measured on a complete group of hollow
and solid fiber specimens. Measurements were made parallel and transverse
to the fibers at 1 kilocycle and 1 megacycle. Specimens were tested after
oven drying and then again after exposure to 50% relative humidity ambient
air.

The following table summarizes the results.

Dielectric Constant at 1 KC
Transverse to fibers- 5 to 8
Parallel to fibers - 6 to 8

Dielectric Constant at 1 MC
Transverse to fibers - 4 to 6
Parallel to fibers - 5 to 6

Dissipation Factor at I KC
Transverse to fibers - 0. 001 to 0. 003
Parallel to fibers - 0. 001 to-. 002

Dissipation Factor at 1 MC
Transverse to fibers - 0. 006 to 0.012
Parallel to fibers - 0. 008 to 0.024

D-C Insulation Resistivity
Transverse to fibers - 1015 ohm-cm
Parallel to fibers - 1015 ohm-cm

60 Cycle Short Time Dielectric Strength
Transverse to fibers - 200 to 500 volts/mil
Parallel to fibers - 100 volts/mil (max.)

1. Identification of samples

The test material consisted of ten groups of 3 composite rods. Each

rod measured approximately 1/4" x 1/4" x 15". Groups represented variations
in the glass fiber dimensions and were assigned identifying letters. Since all
of the rods in a group were nearly identical, and since three rods were required
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to make one test specimen, two specimens were formed randomly from the
six similar rods of a group. Both were then marked with an identifying
letter for the group. This single letter facilitated marking the small
electrical test specimens and referring to them when discussing results.
Table M11-6 gives the sample designation and the corresponding identifications

of specimen variables.

The electrical properties measured in this investigation were as

follows:

60 Cycle Short Time Dielectric Strength

D-C Insulation Resistance
Dielectric Constant at 1 Kilocycle and 1 Megacycle

Dissipation Factor at 1 Kilocycle and 1 Megacycle

Each property was measured in two planes of the material: (a)

parallel to the glass fibers, and (b) transverse to the fibers. All meas-

urements were made at room temperature. Dielectric constant, dissipation

factor and insulation resistance were measured after thorough drying and

after exposure to room humidity; dielectric strength was measured only

after exposure to room humidity.

2. Fabrication of electrical test specimens

a. Dielectric constant, dissipation factor and insulation resistance

For measurements parallel to the fibers, 64 blocks each about 1/4"

long were cut from the rods with an 0. 032" slitting saw on a bench milling

machine and assembled in a removable clamping frame to form a 2" x 2" x

1/4" square with the fiber direction pe;-pendicular to the 2" x 2" faces.

Small drops of epoxy* resinwere used to bond the adjacent block faces, care

being exercised to see that no resin came in contact with the exposed hollow

centers of the fibers. The 64-block assembly was then clamped tightly and

the resin allowed to cure for 24 hours at room temperature. The 2" x 2"

faces were sanded flat and parallel to remove irregularities caused by slight

differences in the cut length of the nominally 1/4" x 1/4" x 1/4" rod sections.

The truing of the faces was started with #240 and finished with #400 Carbimet

silicon carbide grinding paper. The specimens were manually rubbed on the

paper laid on a smooth flat surface.

For measurement transverse to the fibers, 8 (eight) blocks, each

2" long, were cut from the rods and assembled in the frame to form a

2" x 2" square with the fiber direction parallel to the 2" x 2" faces. The

-------------------------------------------------------
*Epon 820, mixed 10 parts of resin to 1 of triethylene tetramine catalyst.
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TABLE M-6

SAMPLE IDENTIFICATION
A 20 -(2) (3)_ (4)

A 250- 2- 9-G 0
250 - 2 - 9 -G 0
250- 2 - 13- G 0

B 250 - 4 - 9 - G 0.5
250 - 4 - 11 -F 0.5
250 - 4 - 15 - G 0.5

C 250 - 6 - 2 - F 0.67
250 - 6 - 3 - G 0.67
250 - 6 - 8 - G 0.67

D 200 - 2 - 4 - G 0
200 - 2 - 11 - G 0
200 - 2 - 15 - F 0

E 250 - 10 - 2 - F 0.8
250 - 10 - 4 - F 0.8
250 - 10 - 9 - F 0.8

G 150 - 6 - 7 - G 0.67
150- 6- 9-F 0.67
150 - 6 - 10 - G 0.67

H 150 - 2 - 3 - G 0
150 - 2 - 7 - G 0
150 - 2 - 8 - G 0

100 - 6 - 7 - F 0.67
100 - 6 - 10 - F 0.67
100 - 6 - 11 - F 0.67

J 100 - 2 - 5 - G 0
100 - 2 - 6 - G 0
100 - 2 - 7 - G 0

K 200 - 6 - 7 - G 0.67
200 - 6 - 9 - G 0.67
200 - 6 - 15 - G 0.67

NOTE: Sample F was machined but not used for electrical measurements.

Col. #1 Outside diam. of glass fibers; 250 = 0. 00250", 200 = 0. 00200", etc.
Col. #2 Ratio of fiber diameter to wall thickness. Ratio of 2 indicates solid fibers.
Col. #3 Rod Number
Col. #4 Estimated Rod Quality (G - Good, F - Fair)
Col. #5 Ratio of Fiber I. D. to 0. D.
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blocks were cemented together with Epon 820 resin with no penetration of
the rod ends by the resin. The 8-block assembly was clamped and the resin
cured for 24 hours at room temperature. The 2"1 x 2" faces were then sanded
flat and parallel using the same materials and procedure as for the parallel
specimens. Since the total area of interfaces between the blocks amounts to
only about 1% of the area of the 2" x 2" measurement surfaces, the resultant
introduction of an extra 1% of epoxy resin seemed unlikely to affect the
measurements significantly. The average thickness of the 2"1 x 2" blocks
after sanding was determined from 5 (five) measurements per specimen within
a 2" diameter circle using a machinist's micrometer with a 0.1 mil vernier.
Fig. Il-16 shows typical specimens of the two types.

After forming, the 2" x 2"1 specimens were air-dried in a forced-
convection oven for 65 hours at 1150C, removed and cooled in a desicator
over Drierite. The specimens were kept in the desicator until the completion
of the "dry" measurements, except for brief periods during which the foil
electrodes were being attached. Fig. 111-17 shows typical specimens in the
desicator with leads attached for the "dry" measurements. The electrodes
for these measurements consisted of 2" diameter discs of lead foil coated
with Dow Corning Silicone Stop Cock Grease. These were rolled onto both
of the 2" x 2" faces of the specimen so as to exclude air and conform to the
surface. Fig. 111-18 shows typical specimens with lead foil electrodes attached.

After the "dry" measurements, the specimens were exposed to ambient
room humidity for 24 hours before re-measurement. The relative humidity
varied between 40 and 50% at a temperature of 250C t 10C during conditioning
and measurement.

b. Dielectric strength

For measurements parallel to the fibers 5 (five) blocks each about
V" long were cut from the rods. Into the center of each 1/4" x 1/4" end of
each block a flat-bottomed hole 0. 125" in diameter was drilled to a depth
such that about 0. 10" of material remained between the bottoms of the holes.
Every effort was made to insure that the axes of these holes were parallel and
on the same center line. Fig. 111-19 shows a specimen ready for test.

The first measurements of dielectric strength transverse to the fibers
were made on short blocks, each about 0. 4"1 long, cut from the 1/4" x 1/4"
square rods. At the center of each 0. 4" x 1/4"1 face of each block a flat-
bottomed hole 0. 125" in diameter was drilled to a depth such that about 0. 10"
of material remained between the bottoms of the holes. Again careful
measurements insured that the holes had a common center line and their
axes were parallel. Fig. 111-20 shows this device ready for test. The
electrodes used for these measurements consisted of two steel rods 0.125"1

in diameter mounted in a plastic fixture so they were axially in line. The
adjacent faces were flat, with the circular edge slightly relieved. (Round-
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Fig. IIl-lb Typical Assembled Specimens for Dielectric Constant, Dissipation

Factor and Insulation Re sistance Measurements.

Bottom: For Mce-surement Transverse to Fibers.
Top: For Measurement Parallel to Fibers.
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Fig. 111-17 Typical Specimens in Dessicator with Measurement Leads Attached.
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Fig. Ill-18 Typical Dielectric Constant, Dissipation Factor and Insulation
Resistance Specimens With Foil Electrodes Attached.

Bottom: For Measurement Transverse to Fibers.
Top: For Measurement Parallel to Fibers.



Fig. III -19 Dielectric Strength Electrodes with Specimens for Measurement Parallel
to Fibers in Place.

56



N 4 .

Fig. 111-20 Dielectric Strength Electrodes with Specimen for Measurement Transverse

to Fibers in Place.
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ended electrodes were not used due to the difficulty in measuring the end
separation). The thickness of material between the bottoms of the holes in
each dielectric strength specimen was determined by inserting and bottoming
the electrode pins, applying a machinist's micrometer over the free ends
of the pins, then subtracting the total pre-measured length of the pins. The
dielectric strength samples were not dried. They were conditioned for 24
hours at ambient room humidity before measurement. Unfortunately, these
first rods were too short and flashover occurred around path a-b-c-d as
indicated in the sketch below instead of across the desired path a-d. It was
evident that a longer specimen was required.

Electrode

iI . _ -- Z- ActualS.. .. aArc

Direction - Path
of Fiber ...... __ _

Alignment

Electrode

DIELECTRIC STRENGTH
TEST SPECIMEN

I The transverse dielectric strength specimen which finally proved
successful was a long rod into which five sets of 0. 125" diam., flat-bottomed
electrode holes were drilled. The end holes were at least 1 " in from the
nearest rod end, and the inter-hole spacing was also 1". These 1" spacings
were sufficient to prevent flashover lengthwise of the rod. The spacing
between the bottoms of the holes of each pair was maintained at about 0. 10",
so that these tests were made on approximately this thickness of material

To prevent flashover in the plane perpendicular to the longest rod
axis, a special jig, shown schematically with specimen in place in Fig. 111-21,
was constructed to increase the flashover path length in this plane. In this

jig the 71" specimen was clamped with the electrode holes vertically disposed
between two 1" wide Lucite strips, with vinyl tape gaskets between the Lucite
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and the 7" x 14" sides of the specimen. Since these strips were, like the
specimens, also about 1/4" thick, they provided an extension of the creepage
path on each side amounting to 2 1/4". Tight clamping which produced com-
pression of the vinyl gaskets, prevented creepage through the interface between
specimen and the extension strips. The clamp was constructed of Lucite and
was provided with drilled holes for the passage of the lower electrode into the
lower electrode hole.

3. Instrumentation

a. Dielectric constant and dissipation factor at I kilocycle

These measurements were made with a General Radio Type 716 CR
Bridge fed by a General Radio 1Z2OC Oscillator. A General Radio Type 123ZA
Null Detector was used to indicate bridge balance.
b. Dielectric constant and dissipation factor at 1 megacycle

These measurements were made with a Wayne-Kerr Type 601 Radio
Frequency Bridge powered by a General Radio Type 1330A oscillator. A
communications receiver was used as an audible-type null detector.

c. D-C insulation resistance

For these measurements, a Keithley Model 240 Regulated High Voltage
Supply gave 400 volts (± 1•%); a Keithley Model 410 Micro-microammeter was
used to measure current and the resistance was calculated from Ohm's Law.

d. Dielectric strength

For these measurements, A General Electric Cat 153x355 60-cycle
2 KVA Test Set was used to obtain dielectric breakdowns. This set is
equipped to give a motoi *driven 500 volts per second rate of voltage rise.
The dielectric strength was calculated from the relation

Dielectric Strength =Dielectric Breakdown Potential (Volts)
Thickness (Mils)

4. Test procedure

So far as the rod-like raw material would permit, the measurement
procedures used follow these standard test methods for electrical properties.
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Dielectric Constant and Dissipation Factor - ASTM D 150-54T
Insulation Resistance - ASTM D 257-58
Dielectric Strength - ASTM D 149-59

Each sample was subjected to the following sequential procedure:

1. Drying and cooling to room temperature.
Z. Attachment of foil electrodes.
3. Measurement of "dry" insulation resistance parallel and

transverse to fibers.
4. Measurement of "dry" dielectric constant and dissipation

factor at I megacycle, parallel and transverse to fibers.
5. Measurement of "dry" insulaticn resistance parallel and

transverse to fibers.
6. Removalfrom desicator and conditioning for 24 hours at

ambient room temperature and humidity.
7. Measurement of dielectric constant and dissipation factor

at I kilocycle and ambient humidity parallel and transverse
to fibers.

8. Measurement of dielectric constant and dissipation factor
at 1 megacycle and ambient humidity parallel and trans-
verse to fibers.

9. Measurement of dielectric strength at ambient humidity
parallel and transverse to fibers on each of 5 (five)
specimens.

5. Results

The results from measurement of all ten samples are tabulated in
Table 111-7 through Table III-10. The results have also been plotted as
a function of cK (the ratio of inside to outside fiber diameter) for the fol-
fiber diameters: 0.00250", 0.00200", 0. 00150" and 0.00100".

a. Dielectric constant (6') (see Figs. III-Z2 through 25)

The decrease in dielectric constant as - increases is evident from
the curves and can be attributed to the greater proportion of air in the samples
made from higher 0, fibers. The difference between the 1 kc values for C I
of the specimens "dry" and at 50% RH is small and suggests moderate moisture
pickup, probably on the outer surfaces, since the solid fiber specimens change
much like the hollow fiber ones. The 1 mc values of 6 ' are generally lower
than the 1 kc values although the curves maintain the same general shapes and
slopes. These I mc values show only negligible differences between the "dry"
and 50% RH values.
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TABLE 111-7

DIELECTRIC CONSTANT AND DISSIPATION FACTOR AT KILOCYCLE

Dielectric Constant Dissipation Factor
Sample Conditioning Parallel Transverse Parallel Transverse

A Dry 8. 2 7.9 .002 .002
B Dry 6. 7 6.6 .001 .00Z
C Dry 5. 7 5. 3 .001 .001
D Dry 8. 5 8.0 .002 .002
E Dry 5. 5 4. 7 .003 .003
G Dry 6. 7 5. 8 .001 .002
H Dry 8. 8 7. 5 .001 .001
I Dry 6.9 5.4 .002 .003
J Dry 7.9 7. 5 .002 .001
K Dry 5.9 5.4 .004 .003

I
I

A At 40-50% RH* 7.4 8.0 .002 .001
B At 40-50% RH 6.8 6.5 .002 .002
C At 40-50% RH 5.9 5.1 .001 .002
D At 40-50% RH 8. 3 7.9 .002 .002
E At 40-50% RH 5.8 4.9 .002 .003

At 40-50% RH 6.6 5.8 .001 .004

At 40-50% RH 7.8 7.4 .002 .001
I At 40-50% RH 6. 9 5.4 .002 .003
J At 40-50% RH 8.0 7.6 .001 .001

K At 40-50% RH 5. 9 5. 5 .001 .001

Relative Humidity
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TABLE 111-8

DIELECTRIC CONSTANT AND DISSIPATION FACTUR AT 1 MEGACYCLE

Dielectric Constant Dissipation Factor

Sample Conditioning Parallel Transverse Parallel Transverse

A Dry 5.9 6. 5 .0062 .0061
B Dry 5. 1 5. 3 .0066 .0078

C Dry 4. 3 3. 8 .0068 .0051
D Dry 5. 5 6.1 .0070 .0082
E Dry 4. 0 3.4 .0075 0066

G Dry 5. 5 4. 7 .0098 .0098

H Dry 6. 6 6. z .0065 0069
I Dry 5. 7 4. 5 .0088 .0078
J Dry 6. 7 6. 3 .0060 .0072

K Dry 4. 8 4. 2 .0067 .0071

A At 40-50% RH- 5. 9 6. 1 .0062 .0084

B At 40-50% RH 5. 1 5. 3 .0066 .0073

C At 40-50% RH 4. 5 3. 9 0066 .0053
D At 40-50% RH 6. 6 .. Z 0089 .0087
E At 40-50% RH 4. 0 .. .0068 .0054

G At 40-50% RH 5. 3 . • .024 .011

H At 40-50% RH 6. 5 .. .0067 .0070

I At 40-50W% RH 5. 7 4. 1 0087 .012

J At 40-50", RH 6. 6 1. .0067 .007
K At .40- 50 "%, RH 4. 8 .. .0067 .0068

Relative Humidity

I
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TABLE 111-9

D-C INSULATION RESISTANCE

(in ohm-crnmA
Sample Conditioning Parallel Transverse

A Dry 8.6 x 1014  1.9 x 1015
B Dry 7.5 x 1014 1.9 x 1015

C Dry 7.0 x 10' 4  8.5 x 10
C Dry 8.9 x 10 1.5 x 101 5

E Dry 5.4 x 101 4  7.9 x 1014
G Dry 1. 7 x 10 1 5  4.1 x 1014
H Dry 7.9 x 10 14  1. 5 x 1015
I Dry 1.4 x 101 5  1.7 x 10 1 5

J Dry 2. 3 x 10 14  Z.4 x 1014
K Dry 2. 6 x 10 1 5  2. 6 x 1015

A At 40-50% RH'.* 2. 6 x 1012 7.8 x 1013
B At 40-50% RH 7.8 x 1013 z.0 x 1015
C At 40-50% P.H 7.0 x 1014 5.9 x 1014
D At 40-50% RH 4.4 x 101' 8.9 x 101 1
E At 40-50% RH 1. 3 x 101 5  1. 5 x 1015
G At 40-50% RH 2. 5 x 101 5  3.9 x 10
H At 40-50% RH 6.5 x 10 1 5  1. 5 x 1015
I At 40-50% RH 1. 9 x 10o5 1.9 x 1015
J At 40-50% RH 5. 2 x 01 5  2.4 x 101 4

K At 40-50% RH 6. 2 x 101 4  4.0 x 10 1 4

This is a combined volume and surface resistivity. Because of the
small specimen size, guard electrodes which permit the separation
of these two types of resistivity could not be used.

,: Relative Humidity
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I
TABLE III-10

60 CYCLE SHORT TIME
DIELECTRIC STRENGTH

(volts/rmil)

A 104 490*

B 4Z 290

C 45 420'

D 29 500*

E 36 z00

G 45 300

H 37 430*

I 45 180

J 63 480"

K 50 330

* Tested under oil; all other values obtained in air.
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Fig. 111-22 Dielectric Constant at 25 0 C.

Conditioning - Dry, Frequency - 1 kc
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I
b. Dissipation factor (& ") (see Figs. 111-26 through 29)

These curves have been plotted to a scale which does not accentuate
non-significant variations. For some unknown reason there is a slight
tendency for the values to increase as cx- increases; however, the trend

is not conclusive. Variations could easily be caused by rninor differences
in resin content, cure cycle, and the like. The same is true for the effects
of humidity; no significant effects are evident. There is, however, a very
pronounced correlation of 6 " with frequency. Values at 1 mc are con-
siderably higher than those at 1 kc.

c. D-C insulation resistivity (1p) (see Figs. 111-30 through 33)

In interpreting these curves it should be remembered that, in insulation

resistance measurements, only changes of a decade or more can be considered
significant. With this in mind, the "dry" values show no conclusive trend when

a is varied. At 50% RH the variations of r with o< no longer follow a
consistent pattern: the 0. 0025" and 0. 0020" samples show increases in (P

parallel to the fibers as -, increases, while the other two sizes show insignifi-
cant changes. For the transverse samples the 0. 0025", 0. 0020", and 0. 0010"
samples increase in f as W_ increases while the 0. 0015" sample decreases.

It is evident that the anomalies occur not only in the hollow fiber
specimens, but in the solid fiber one. Noting that the value of to for glass
is very high (about 1016 ohm/cm) leads one to believe that the unusual behavior
is caused either by the resin or by the surface contamination of the specimen.
Subsequent investigations should employ a different type of specimen to separate
these effects.

d. Dielectric strength (D. S.) (see Figs. 111-34 and 35)

The parallel D. S. values indicate that breakdown in this direction
takes place along an internal creepage path containing air pockets. This is
the characteristic of inhomogeneities such as cavities or completely im-
pregnated regions. While low creepage breakdowns might be expected to
take place along the hollow fibers, the fact that the solid fiber samples also
broke down at or below 100 volts/mil indicates that axially oriented voids
exist in the composites.

The transverse dielectric strength curves show a more consistent

behavior. D. S. tends to decrease with increasing w. as might be expected
from the increase in air content at the higher a< values. The consistently
high transverse D. S. values for solid fiber specimens suggest that the axially
oriented voids discussed above must be of very minute transverse cross-
section. This supports the conclusion that these voids are oriented parallel
with the fibers.
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IV. Analysis

Prediction of the structural performance of a composite material

requires the evaluation of the strength and stiffness of the material under
various types of loads. However, a composite material subjected to even
simple external loads has a complex internal state of stress which is not
susceptible to exact analysis. In order to evaluate the performance of
such materials, approximate solutions for the internal stresses must be
utilized. When estimates of the internal stress field are available, the
external behavior can be readily derived.

For certain loading conditions, the material must be treated as an
inhomogeneous composite, to investigate the internal stress field. Thus,
for example, the definition of ultimate tensile strength requires an under-
standing of the stress distribution in the two constituents, including all
localized stress concentrations, so that the mode of internal failure and
the quantitative failure level can be predicted. The difficulty of this prob-
lem implies a degree of inaccuracy of the results which may well limit
their value to qualitative comparisons of the various potential constituents
and geometries.

For other loading conditions the material may be treated as a quasi-
homogeneous material having certain average or effective properties. Thus,
for example, the deflection under a uniaxial load can be related to that load
by the use of an effective modulus of elasticity. This effective material
approach is of value for the determination of such things as the acoustic
impedance under large (relative to the characteristic dimension of the in-
homogeneities) wavelength excitations, behavior under hydrostatic pressure,
fiber stability evaluation, as well as for the various elastic constants of the
composite material. These properties are, in effect, integrations of the
internal stress field characteristics and thus, it appears that the errors are
likely to be smaller and the results more suitable for quantitative analysis.

The analytical work described herein is largely concerned with the
latter type of structural behavior. The analyses presented treat the major
overall structural characteristics of hollow glass fVber composites, namely,
the elastic constants of the material. In section A, below, the evaluation of
these elastic constants is described. Determination of certain aspects of
the internal stress distribution are inherent in these studies and are also
discussed in that section. The significance of certain of the results is
apparent only when used in a structural analysis. The results of such static
analyses are described in section B. Further the dynamic structural
behavior is considered in section C.
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A. Material Analysis

The material treated consists of an epoxy matrix reinforced with
straight and parallel hollow glass cylindrical fibers oriented in one or two

directions. For the case of uniaxial stiffening, the effective elastic con-
stants are those of a transversely isotropic medium having five principal
constants. The work herein has provided estimates of, or bounds to,four
of these constants. In the present notation, the studies have defined the
axial modulus, El, the transverse modulus, E 2 , and the Poisson's ratios
associated with axial loading, V g. and with transverse loading, &'/Z3 "
The shear rigidity in the longitudinal plane, GI2 , has been the subject of
some study and certain approximations have been obtained. However, a
complete model does not exist and G 1" remains undefined and is a required

output of future research. The remaining elastic constants (includingE 3 ,

"X.31 ' /12' &/31 and G 2 3 ) are defined as functions of the aforementioned
known constants and are thus available.

The model used to define the elastic constants considers the material
to be composed of a series of composite tubes containing a hollow glass fiber
surrounded by a coaxial tube of binder material with volume fractions of the

constituents equal to the average volume fractions found in the composite

material. The tubes are considered to vary in size from some arbitrary
maximum value, which is small with respect to a composite material speci-
men being considered, down to zero diameter so that the entire material
may be comprised of an assembly of such cylinders. When proper considera-
tion is given to the lateral boundary conditions the evaluation of the behavior
of a single such tube is adequate to define the behavior of the composite.
This is discussed further in the description of the individual elastic constants.

The material is anisotropic and the fiber and matrix properties have

different relative effects upon the various elastic constants. Any perturbation
of the properties of a given constituent (for example . change in the fiber

hollowness) will have a total effect which can only be evaluated by considering

a structural application. For example, the results of the computation of the

elastic constants of a biaxially reinforced plate show wide variations of Young's
Smodulus as a function of loading direction and fiber orientation and the opti-

mum orientation cannot be defined until the structural environment is specified.

In part Z below, plate buckling is treated as a typical environment and optimum

orientation is then readily determined.

Further the effects of density as well as elastic properties must be

considered and thus several structural environments are evaluated from a

structural efficiency point of view.
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I
1. Longitudinal elastic constants

The longitudinal elastic constants (those defined by material dis-
placements under a load parallel to the direction of fiber orientation) are
determined by applying an axial displacement to the material. Each of the
previously described composite cylinders which are considered to comprise
this material will have a radial displacement at the outer surface which is
proportional to the outer radius. The resulting displacement field is thus
a compatible one and the behavior of the composite is defined by the behavior
of a single composite cylinder containing one hollow glass fiber.

Young's modulus

The inside radius of the fiber, ro, and the radius of the fiber-binder
interface, rf, and the outer radius of the binder, rb, define the geometry.
An average axial displacement, ! , requires an average stress over the

end face, &z' which defines the axial modulus, El, namely:

The radial displacement, u, for this problem is (see, for example,
ref. 16):

es an or e (2)

/_Pr _ daah (3)

6E r IL

where p equals the radial stress at the interface between the fiber and binder.

6'equals axial stress (which is constant over each material).

The axial strain is constant and the axial displacement is thus linear.

The axial strain is:
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4. _ (4)

, ( ()

From the definition of 6? :
Z

~~'6 6--, + V•% 6

The boundary condition requires that

~ ~6 6(7)

Compatibility requires that

4 4~ (8)

Substitution of eqs. (4), (5) and (6) into (7) and of eqs. (Z), (3) and

(6) into (8) yields:

- f -1, 4 (9)

+ (4 E4
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The solution of these two simultaneous equations yields the two unknowns,
and a' bp as functions of & . When these are evaluated, equations (5) and

(7) can be used to obtain & A a function of E. Eq. (1) will then define El.The result is the following expression for effective modulus:

A -4 r (A%8) J ,- A,')
4,A -4 + r7. (A,- 4)(1

where
A, = V4 + Y ',-"•

V

1+ V+ 4

z -V-6

/ E 1 =Ea

44

V4 $V1. E'

The result has been normalized with respect to the weighted average
modulus, Eav* This latter quantity is the modulus obtained by neglecting

Poisson's effects and assuming plane sections remain plane. Thus, it can

be obtained from eq. (11) by setting -V = -V 0, which yields:
E b

1 av

The same result is obtained for "/f V b 0.-
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Poisson ratio effects:

The effect of non-zero Poisson ratios on the effective longitudinal
modulus, El, is evaluated by considering the following extremenumerical
examples.

Consider: vv 0 vf vb = 0.5

Case I: f =0 =b 00.4
Eb

E1_ - 1. 005
Eav

Ef 2

Case I f 0.4 b E- 2 0

bE b
- 1.005

Eav

Ef
Case III: f = 0 b = 0.4 -=

E Eb

E = 1.04
Eav

Case IV: f 0.4 )b = 0 Ef I
Eb

- 1. 09

Eav

The conclusion is that differing Poisson's ratio have a negligible
effect on the axial modulus unless vfEf and vbEb are approximately equal,
in whcih case the effect is small but perhaps not negligible.

Shear stress effects:

The above study treated boundary conditions of uniform axial displacement.
Because of the symmetry of the structure, this resulted in a constant-strain dis-
placement field. The effect of a constant axial stress boundary condition should

be considered. Both of these effects intioduce a load transfer between fiber and
matrix. Since load is transfer'red between matrix and fiber by shear stresses, a
study has been performed to evaluate the effect of shear stresses on the modulus.
The model is as shown in Fig. IV-1 and consists of a fiber surrounded by a matrix
which in turn is imbedded within another material. The fiber and matrix constitute
an inclusion in the average material.
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Fig. IV- 1 Model for Determination of Effect of Shear Deiormation on the

Elastic Modulus of Uniaxially Stiffened Material.
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The method of approach is to consider the model with a uniform stress
applied to the end faces, and to determine the average longitudinal strain. The
problen, cannot be solved exactly and a shear lag type analysis is utilized herein.
The method is not aimed at the determination of an exact stress distribution, but
rather at an approximation of the contribution of the internal shear stresses to
the longtudinal extension. The need for refinement of some of the initial assump-
tions will be largely determined by the results obtained with this model.

Load is applied parallel to the fiber direction. The fiber is assumed to
carry only extensional stresses and the matrix to transmit only shear stresses.
The material surrounding this typical fiber-matrix element is assumed to have
uniform characteristics which are those to be evaluated. This "average"
material will have the effective properties of the composite. No stress is

transmitted axially from the end fiber to the average material. Shear stresses
in the average material are considered to decay in a negligible distance from
the inclusion interface.

For equilibrium of a fiber element in the axial direction:

where shear stress in matrix material
" axial stress in fiber

For equilibrium of the composite in the axial direction:

17 + -- (13)

where = axial stress in average material
= applied axial stress

The axial displacements in the fiber, uf, and in the average material,
ua, define the binder shear strain, " , as follows:

- -U (14)

Differentiating eq. (14) with respect to z, and using Hookes law, yields:

Differentiating again, yields:
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(15)

where Ea = effective Young's modulus of the composite
Ef = Young's modulus of the fiber
Gb = shear modulus of the binder

Differentiating eq. (13) and substituting the result and eq. (12) into
eq. (15) yields:

(16)

where

The solution to eq. (16) is of the form

The boundary conditions are:

%7(0) 0

and

(17)
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I

,From eqs. (12) and (17):

0.,- r._- -

With the stress distribution established, the displacements can be
determined and the average strain willbe defined. From Hookes Law, and

the strain- displace ment relation for uniaxial stress:

14- " (19)

The average strain, ,need only be considered over the length of the fiber
. since deviations from average stress are considered small over the end

region; thus,

0 . 1 C r -

- (l1

L', -- Iz

SFromth estran(ispacmeth r ela ()tion forlwn eunaxia n ftress: fetiemouu

A• + (23)

where

(24)
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vi = volume fraction of inclusion relative to modelvt = volume fraction of tube relative to inclusion
vf = volume fraction of fiber relative to inclusion

For a meaningful model the inclusion is a small volume fraction.
Thus, the modulus is found by setting vi = 0 in eqs. (23) a-.1 (24):

I

7jI (25)

where
2!

(Iv, - -K - e (26)

The modulus, Ea, is plotted in Fig. IV-2 for two values of l/rf and of

The weighted average of the constituent moduli is used as the normalizing
factor, so that the reduction of modulus due to shear deformations is indicated
by a modulus ratio less than unity. (In this case, neglect of extensional stresses
in the binder reduces the weighted average, E av, to: E y= vfE) For the
solid fibers the modulus ratio is seen to be very close to unity zor even a very

small aspect ratio of 1/r = 100. This corresponds to a length of only 0.05"
for conventional glass filaments used in filament wound construction. The
curves for l/rf = 10 are shown to indicate the aspect ratios necessary to pro-
vide a significant contribution from the shear modulus considered. These
curves are shown for both solid and hollow fibers.

It is clear from figure IV-2 that the contribution of shear deformations
to effective axial modulus is small, for glass-reinforced plastics. It was shown
above that the effect of different Poisson's ratios upon the axial modulus for
glass-plastic composites is small. It therefore appears that the weighted average
of the constituent moduli is an adequate measure of the effective axial modulus

of uniaxially stiffened glass-plastic composites. This is the value used in sub-
sequent studies oC biaxial stiffening and structural efficiency. For other
reinforced-matrix materials it is recommended that eq. (11) be used to
evaluate the axial modulus unless the stiffening fibers are of extremely
short length in which case they should probably be treated as randomly
oriented particles.

Poisson's ratio

Using the model of concentric cylinders of glass and plastic, the

effective Poisson's ratio, V/ 2l' is readily defined:
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Fig. IV-2 Variation of Modulus with Fiber Volume Fraction and Fiber Length,
Showing Effect of Shear Deformations.
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-Val (27)

Using the values of p and 0- obtained from eqs. (9) and (10), ub(r

and e can be evaluated from eqs.') and (5) respectively (noting eq. 7P.
Substitution of these results into eq. (27) yields:

~~Ca4bi'~6z1 ~(28)

where

2. VI)(~4v (IV4-V 4- )vV

For a glass-plastic composite which has 30 7. plastic with -Vb 0. 35
and -V/ = 0. 20 it is found that I/ varies only from 0. 238 to 0. 244 as o.

21
varies from 0 to 0. 9. This is shown in Fig. IV-3.

Interface pressure

Different Poisson's ratios for the fiber and the matrix result in radial
interface stresses when the composite is subjected to axial load or to tempera-
ture changes. The longitudinal property analysis required the evaluation of this
stress under axial load. The resulting interface stress, p, for an axial stress,

ý Z' is:

V 9" (29)F~~~ ~ = _4 , 3(

where
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Fig. IV-3 Poisson's Ratio for Glass Plastic Composites Loaded Parallel to the

Stiffening Fibers.
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2. Transverse elastic constants

The model used for the evaluation of the transverse elastic constants
is geometrically the same as that used for the longitudinal constants. The
hollow fiber cylinders are randomly distributed over the transverse plane and
it is assumed that the composite is isotropic in this plane. Since the fiber
diameters are very small compared to their lengths, it will be assumed that

the cylinder will be in plane strain when tractions normal to the fiber direction
and independent of location along the fiber are applied. The moduli are
evaluated by strain energy techniques. The method is described in Appendix
A and the results are as follows:

t &6

>3 - O~V "' (30)

_t, (31)

k(+ V)j~~)~'j (32)

The bounds for the plane strain bulk modulus coincide. The constants

A Rnd AE are evaluated as described in the appendix. The bulk and
shear moduli so defined are denoted as K': and G 2 3 44, respectively". For an
isotropic homogeneous material:
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and

where E = Young's modulus
"V = Poisson's ratio

Fig. IV - 4 shows the variation of K* with the ratio, K., of inner to
outer diameters of the hollow fibers for two different volume fractions binder,
vb. The bulk modulus is normalized with respect to the equivalent quantity
for binder, Kb, or fiber, Kf. Note that the curves cross at oý. = 0.94. This
is the diameter ratio for which the effective bulk modulus of a hollow fiber Is
the same as that for the binder. Figure IV-5 shows a similar relationship
for the normalized shear modulus with three volume fractions considered.
Computed points are presented by the plotted symbols, and curves are drawn
connecting the points for vb = 0. 2 to indicate the nature of the property

The values shown in Figs. IV-4 and IV-5, along with the axial com-

posite properties, can be used to obtain Young's modulus and Poisson's ratio
in the transverse plane. The latter properties can then be used in the ex-
pressions for the elastic constants of biaxially stiffened materials.

3. Elastic constants for biaxially stiffened material

The applications for hollow fiber reinforced plastics are expected to
include filament wound structures. It is therefore important to study the
characteristics of the hollow fiber composites with biaxial stiffening. For
this purpose, the material may be considered as a laminate of orthotropic
plates alternately oriented in each of two directions. Each plate has a
single fiber orientation direction and the elastic constants of each plate are
the uniaxially stiffened properties described in the previous section. The
relationship between those properties and the laminate properties are
available. (See, for example, ref. 2) Hence the studies of the uniaxially
stiffened material can be used to analyze the behavior and determine the
desirable geometry of actual filament wound structures, designed by stiff-
ness considerations.

The coordinate system used in the following work is shown in Fig.
IV-6. The laminate consists of layers of fibers in each of two directions,
A, and B1 , inclined at equal and opposite angles, 4 , to the y axis. A large
number of layers in each of the A and B directions are considered so that
bending and extensional characteristics will be of the same form. In each
plate the 1 direction is parallel to fibers and the modulus in that direction may
be taken a Eav, for each layer.
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Composites.
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Fig. IV-5 Effective Transverse Shear Modulus, G2 3 , of Hollow Fiber Composites.
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The modulus in the 2 direction will be obtained as described previously.
The shear modulus, G1 2 , is also required. A model for this remains to be
developed. The influence of these moduli on a composite is shown in Fig.
IV-7 for values representative of glass-plastic composites. The strong in-
fluence of 9 and GIZ are apparent.

For a fixed ( it is important to note that the properties vary consid-

erably with direction. Figures IV-8 show this variation. The ratio of Young's
modulus at any angle, A , to the y axis divided by the uniaxially stiffened
modulus for tha same fiber geometry is plotted against the loading direction,
A . The existence of the wide property variations in Figs. IV-7 and IV-8
indicatesthat a criterion for the evaluation of multi-directional properties is
necessary. Such a criterion should be a mode of failure which involves
biaxial stress fields. The criterion selected is the buckling strength of an
orthotropic plate compressed in one direction. This will be discussed further
in section B-2 below.

B. Structural Analysis

The properties determined in section IV-A can be used to evaluate the
performance of hollow glass fibers for various structural applications. The
potential of this hollow fiber material can be studied by treating uniaxial
stiffening. More refined evaluations can then be performed for biaxial
stiffening using the pertinent structural criteria. Structural efficiency studies
of uniaxially stiffened material are presented below and then as an example,
a stability evaluation of biaxially stiffened plates is presented.

1. Structural efficiency analysis

The fact that hollow fibers result in a variation of the material density,
as well as of the mechanical properties, requires that material comparisons
be made on a weight basis and thus, that a structural efficiency analysis be
utilized. In the work that follows, hollow fiber composites are compared on
this basis to solid fiber composites of the same binder geometry.

Young's modulus

As described in section IV-A, the modulus in the axial direction is

adequately represented by:

6 6 (33)
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which may be rewritten as:

1+ C: ~6 (34)

This is normalized with respect to the solid fiber material of the same
binder geometry yielding:

F, O - % t)• ' < ) + , Irk _

-rt (35)

Density

The average weight-density of the material, fc, is given by
(neglecting the weight of included air):I v', (' + V' (' (36)

which may be rewritten as:

UV

4 (37)

This is normalized with respect to the solid fiber material of the same
binder geometry, yielding:

( 4 (38)

Equations (37) and (38) are plotted in Fig. IV-9.

Modulus-density ratio

wt The modulus to density ratios for hollow fiber composites normalized
with respect to equivalent solid fiber composites are given by:

0(39)
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and are plotted in Fig. IV-10a.

Tensile strength

The average stress in the composite under an axial load is:

6 + V CT (40)

In the elastic range the stresses will be essentially the plane strain
stress distribution. Thus, eq. (40) may be rewritten as:

V1. (41a)

I o-- •(41b)
or V0 -- () V

Although inelastic effects and uncertain interior stress distributions

L will contribute to failure, a first strength estimate may be made using eqs.
(41). Treating the fiber failure as the cause of composite failure, one ob-
tains the hollow to solid strength ratio as:

jrf -- (42)

V1)+ V,6

From eq. (35), it is seen that:

I

Thus, the ratio of strength-density ratios will be the same as the ratio of
modulus-density ratios. That is:

X ••:(43)
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and the results in Fig. IV-10a are applicable.

Bending strength - slender beams

The maximum bending stress in a cantilever beam with a tip load, P, is
given by:

Pt.

(44)

where:
L = beam length

for a rectangular cross section of dimensions b and h.

To perform the structural efficiency study, the cross section shape is held
constant. That is, a constant ratio is maintained between the width b and
thickness h.

e

Thus, eq. (44) becomes:

-(45)

The weight of this beam is:

bI L e L (46)

From eq. (45):

e(a) (47)
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Substituting eq. (47) into (46), the weight is related to the strength of the
composite.

S•(Ce( e

or simply

-v- (48)

The efficiency of the material in supporting the load P at a length L is in-
versely proportional to the weight.

Comparing the efficiencies of hollow and solid fiber reinforced beams,

based upon the bending strength criteria, and using the strength definition of
eq. (41a)

-- -- -'-- = 77(49)

Curves of this equation are presented Fig. IV-lOb.

Beam deflection

An analysis of bending deflection for the cantilever beam treated above

exemplifies the advantages of hollow fibers with regard to minimizing deflec-
tion under load. The deflection of the loaded end of the beam is

Pi
(50)

I • z

Again, we can let b/h e,

4 PA-3

I The weight of the beam is
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tg:

- t • (52)

The comparative efficiency of any two beams can be defined as the weight
ratio for equal deflections. Thus, the comparison of efficiencies of hollow

fiber to solid glass fiber reinforced plastics with regards to stiffness is,

- -53)

E.l

This equation is plotted in Fig. IV-l0c.

Column buckling

Euler's formula for the critical buckling load of a long, slender column

with hinged ends and having an axially applied load is

a (54)

where I is the least moment of inertia.

An efficient column has equal bending resistance in all directions and,

therefore, is usually of circular cross-section. The structural efficiency

analysis is therefore performed on a circular cross-section column so that:

where ro = radius of gyration of the composite cross section

A = cross-section area
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Thus

or -Ir (55)

where is the structural index

-- is a non-dimensional cross-sectional characteristic.

The column weight is

At( (56)
Cr.

Thus

or (57)

And the relative efficiency of the rod in column buckling is seen to be the
same as for the beam deflection criterion. Thus

-• -- -(58)

The curves of Fig. IV-10c are applicable to the buckling criterion also.
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Compressive strength

There is evidence to support the short compression specimen failure
theory for filamentary structures presented in ref. 3 which states that fail-

ure is initiated by buckling instabilities of individual fibers. Buckling of

these small columns (microbuckling) can be treated as buckling on an elastic
foundation. This problem was studied in ref. 3, but is presented here in
somewhat different form to indicate the effect of certain foundation character-

istics.

Ref. 7, pages 108-112, gives the following equation for a long, slender

column (in this case an individual fiber) supported continuously by an elastic

foundation

4 (59)

where L/m is the half wave length of the buckling mode. This value L/m is
related to the column properties as well as the spring constant of the sup-

porting medium by

-- ; (60)

The foundation modulus i (lb/in2 ) represents the magnitude of the force
exerted by the foundation per unit length, per unit lateral displacement.

From eqs. (59) and (60) and substituting for Af and if

If, as a first estimate, it is assumed that the foundation modulus is

the same for hollow and solid fibers, the critical stress ratio will be

- - (,- / (62)

From eqs. (41) and (62)
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And thus the structural efficiency for maximum compression stress
is:

(, 7 7 (63)

This equation is plotted in Fig. IV-10e.

From eq. (61), it can be seen that, as x --I 1, a' ---. At high
values of oe- , other failure modes will occur. The following discussion
considers such other possible modes and initial estimates of relative mag-
nitudes are made. For high values of o< , it is seen that 0 b will rapidly
approach its maximum allowable value. Since

for the glass-plastic composite:

Cr.

and a 10 ksi plastic strength would be adequate for a 340 ksi glass failure
stress. Thus the limiting fiber radius ratio for this mode will be above,

0. 8. This is shown on Fig. IV-11. Also shown on this figure is

the shape of the glass failure stress curve of eq. (61).

Still another phenomenon occurs as w -31, namely, the collapse of the

thin walls by local buckling. The buckling mode would be a sinusoidal wave
about the initial neutral axis of the thin wall. As a first estimate, the failure

stress for an unsupported cylinder is used (ref. 7, page 440)

= __(64)
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I

where

Eq. (64) can be written as

O__ - 'r (65)
W.

This equation is also plotted in Fig. IV-11 and it is seen that this failure
mode is not critical. A maximum glass stress is also indicated and the
desirable operating envelope is thus qualitatively pictured.

2. Stability analysis - biaxial stiffening

The structural efficiency analyses described above indicate the
potential of hollow glass fiber composites. Most applications, however,
will require the use of biaxially stiffened composites and consideration of
a typical structural environment is necessary to assess the effect of the
biaxial stiffening geometry upon structural weight.

The criterion selected is the buckling strength of a simply supported,
long, orthotropic plate subjected to uniaxial in-plane compressive load. The
buckling stress, •cr' for such a plate is given by ref. 7 t(pg. 382) as (in the

nomenclature of this paper)

IrT
+ (66)

where

iy

It V

4 (67)
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a = plate width
h = plate thickness

Substituting eqs. (67) into eq. (66) and noting that:

yields:

~4
Cr (1 68)

The buckling stress of an isotropic plate with properties E and Vy xy

15:1

The plate buckling stress ratio for orthotropic plates normalized with
respect to an isotropic plate with equal longitudinal properties is given by:

0,. c...v4 ~ ~(70)

Eq. 470) was evaluated and the results obtained are presented in Figs.
IV-1Z and IV-13. Fig. IV-13 presents the critical stress ratio as a function
of the lamina orientation angle. Note that maximum stress is achieved at

= 450. Further, at this orientation, the critical stress is independent
of the shear moduli. The variation in stress associated with change in
lamina orientation for a given shear modulus is not large and the variation in
weight is even smaller. This latter is because the weight is inversely pro -

portional to a fractional power of an effective plate stiffness, while the
stress varies linearly with the effective plate stiffness.

For two limiting lamina orientation angles, the variation in critical
stress ratio with elastic constants is shown in Fig. IV-13. The significant
effect of E2 for both 6 values and of G12 for 9 = 0 is apparent.

The indications of the work are that proper selection of geometry can
produce significant improvements in performance. When better estimates
of G12 become available, the selection of binder and matrix geometry for
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biaxially stiffened material should be feasible, as a function of the loading
environment.

C. Acoustic behavior of hollow-fiber composites

1. Acoustic parameters

The basic properties governing the response of hollow fiber composites
subjected to an acoustic disturbance are the characteristic impedance and the
propagation constant of the material. The first parameter defines the amount
of acoustic energy being reflected at the bounding surface and the latter speci-
fies the degree of attenuation of the pulse inside of the material. Since the
wave length oi the ordinary acoustic perturbations is large compared to the
transverse dimension of the fiber, the behavior of the composite is analyzed
by using the ordinary tools of geometrical optics.

2. Velocity of sound in composites

The following analysis, characteristic for an infinite transversely
isotropic medium, gives the speed of sound for any direction of propagation
of the acoustic disturbance.

Let • be the surface bounding that portion of the material which is
disturbed by the perturbation at time t. If 1, m, and n are the direction cosines
of the normal v to E at any of its points having the same orientation of the
propagatioun of the disturbance, and 1', mt, and nt are the direction cosines
of any tangent r to E at the same point, the orthogonality condition is
expressed by:

+ 0 (71)

The displacement u = (ul, u2 , u3 ) must vanish at • ; hence for all directions
satisfying eq. (71) it must be

S- a'/ ' ,' o

Therefore, for every point of £
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m=

I

x.,

or

/ ~ /~a,(72)

The same boundary conditions for the displacement must hold when the moving

surface Z reaches a new position after the time St. At this time the coordin-

ates of a point of • are

where c is the velocity of the acoustic disturbance. Hence

From eq. (72)

, = j_
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and the analogous ones, so

c lu,

Finally

and

A- _.__ .

The above are the kinematic conditions at " . The dynamic conditions are

given by the equations of momentum:

YI (74)

where 4 , are the components of the force per unit area acting

across Z in direction V .

Introducing the strain energy function W, eq. (74) may be rewritten as
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JI

i The strain energy function for transversely isotropic media may be written as

(76)

+ 2,, 4z . .. + (4 +s.+) -tC; 54

If the components of the strain are replaced by the time derivative of the
components of the displacement according to eq. (73), the strain energy
function is written as:

2oz2'Wr 2 : c. I i, + c+.?.(• •.-,-nU Ij.

S(I L,,, + nd U . .,.2 .(77)
I

IAccordingly, the strain energy is a homogeneous quadratic function of IU

"Vi= 141 , ,. + a(, I az -t.. O ,eS,,,' a., +zol It132 ,+i I, 1k0, + 2 -e,,, ,, U• (78)
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where:

, + c, +C66 M.,,c nz

0(33* C96..C 4 4r,~l + Cý2 n

(79)
0('23~ (ca S +c4 4)m

dIl (ca + c66) r

Therefore, using eqs. (77), (73) and (76) one gets
ii

L12 ¢z•+ o 4,j C,, n o U.;, ,
( c , (80)

I
Consequently, by means of eq. (75)
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and the analogous 
Lot

In terms of the coefficients of the quadratic form (78) the above system
of equations may be rewritten as

C9 (81)

.3, LU1 + Wa4 u +L T(o(1 .JSU

Hence the determinantal equation,

(82)

is bicubic in c. The three pairs of roots represent the velocities of advancing
and receding families of waves, one dilatational and two transverse polarized
in planes parallel and perpendicular to the fibers orientation, depending upon
the direction of the acoustic disturbance.
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The velocity of sound, in the lirection parallel and perpendicular to
the orientation of the fibers, is calculated for a typical composite containing
30%/o plastic by volume. The elastic properties appearing in this section were
thoroughly described in section IV-A of this report.

If a is the inner to outer diameter ratio of the fiber, the following
table gives the elastic constants pertaining to various values of O(

K*, Psi '1021 Elpsi G p3,i Ps # sec 2

0 1. 88 x 106 .238 7.47 x 106 0. 677 x 106 2. 025 x 10-4

.2 1. 82 x 106 .238 7.18 x 106 0. 677 x 106 1. 958 x 10-4

.5 1. 49 x 106 .238 5.63 x 106 0.652 x 106 1. 608 x 10-4

.75 0.94 x 106 .240 3.34 x 106 0. 544 x 106 1. 083 x 10-4

.9 0.47 x 106  .244 1. 52 x 106  0. 356 x 106  0. 673 x 10-4

.9999 0. 074 x 106 .350 0. 120 x 106 0. 0115 x 106 0. 361 x 10-4

SA satisfactory analytical model which gives Gf2 has not been found
yet. Therefore, in the following section the numerical results relative to
the velocity of the acoustic disturbance across the material have been ob-
tained for values of G*2 corresponding to the following estimate of the upper
bound: (Note that the dilatational wave velocity is independent of G")

_ El

The above parameters have been related to those strain energy coefficients, cip
which are of interest in the current analysis.

a. Sound velocity in the direction parallel to the fiber orientation

Eqs. (79) give the values of the coefficients, :ai1., corresponding
to the direction of the acoustic disturbance, I = 1, m and n = 0

They are the following:
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I 04i =

0

Hence the determinantal eq. (82) gives

Without considering the case

corresponding to the transverse disturbances, Fig. IV-14 shows the velocity

of the dilatational wave vs.the parameter o(

[ b. Sound velocity in the direction perpendicular to the fiber orientation

The values of o4 ij corresponding to the disturbance traveling in the

I direction 1 = 0, m = 1, n = 0 are the following:

cell 1 3 16
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A plot of the acoustic velocity vs.the parameter o corresponding to ,his

propagation is shown in Fig. IV-15.

It is seen that the velocity of sound increases with 0( up to

= 0.75 at which c = 9750 ft/sec. Beyond this value of 0( the

velocity rapidly decreases, until at 0 = 1 the velocity is c = 4090 ft/sec.

This is the velocity of sound for the plastic matrix containing the holes pre-

viously occupied by the fibers. This behavior of the velocity curve may be

explained by considering that the glass fibers stiffen the plastic matrix in

the transverse direction by virtue of their radial rigidity. As O0 increases

in the region 0 - o0( 1E 0.75 the ratio of the radial stiffness to the density

of the fiber increases because the material at the center of the fiber contri-

butes less to its radial stiffness than does the material at the outer region.

Consequently the speed of sound increases within this range of C-.

* 3. Acoustic impedance

The impedance for anisotropic media varies according to the direction

of the acoustic wave, and it is defined as the product of the density by the

sound velocity.

A plot of the impedance vs. the inner to outer diameter ratio of the

fiber is shown in Fig. IV-16.

As before, the composite contains 30% binder by volume.

The impedance has been calculated in the direction perpendicular to

the fibers orientation. The curve decreases regularly from the maximum
z = ZZ. 72 lb'sec/in3 corresponding to oX = 0 to the minimum z = 1. 77
lb.sec/in 3 for cp= 1, that is for the plastic matrix alone with the holes, but
without the fibers.
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[ Appendix AI
TRANSVERSE ELASTIC MODULI OF TUBE REINFORCED MATERIALS

by Z. Hashin

1. Introduction

In the following, the problem of the prediction of the transverse elastic
moduli of an elastic matrix reinforced by parallel tube shaped fibers, of

another elastic material, will be considered.

Since the fibers are all circular and their cross sections are randomly

distributed in any transverse plane normal to the fiber generators, it will
be assumed that the material is isotropic and homogeneous in this plane.
Accordingly, the transverse moduli are completely specified by an effective

transverse bulk modulus and shear modulus.

The transverse plane will in the following be chosen as the plane.Sfollowing. as x~x3 pae

The bulk and shear modulus are denoted by K" and G":"3. For reasons of
simplicity, the effective shear modulus will, during the following treatment,
be written as G".

The actual reinforced material will be treated by means of a simplified

model. A cylindrical specimen of the composite (Fig. A-1) willbe considered
whose generators are parallel to the fiber axes. It will be assumed that the

fibers extend from base to base of the specimen. Since the fiber diameters
are very small compared to their lengths, it can be assumed that the cylin-
der will be in plane strain when tractions parallel to the transverse planes
which do not very with generator direction (x 1 ) are distributed on the cylin-

drical surface.

The transverse effective moduli can then be regarded as the plane strain

modali of the specimen and the problem is to determine these in terms of
the elastic moduli and volume fractions of binder and fiber materials.

The method adopted here is analogous to one used for treatment of a

related three dimensional problem of prediction of effective elastic moduli
of composite materials (ref. 13)

2. General Method

In the following, a cylinder of composite material of unit thickness
(Fig. A-2) will be considered. (') Points in the transverse plane, normal to
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tube generators, will be related to an x2 , x 3 system of coordinates.

Assume that the cylinder of composite material has a cross section
which is very large in comparison to the tube sections and denote the

contour of this section by C(++) and the cylinder volume by V. Let C
be loaded by tractions in the x?, x 3 plane, which are independent of x.

and are given by 3

T. (C) TO. n. (2.1)1

where 0'.. are constant stresses, nj are the components of the outward nor-
ireal to C and the range of the subscripts i, j is 2, 3. It can be proved that

the ofean stresses in V are then given by wlo e

Now let it be assumed that plane displacements on C are prescribed
which are of the formo

u. (C) =(2. 2)

where the -.. are constant strains. It can then be proved that the mean
strains in V a~re dfj.

S'The assumed quasi-homogeneity of the composite will now be defined in

the following way. Let a cylindrical element, whose bases coincide with
those of the large cylinder be chosen. Let the base area of the large cylin-
der, contained in C, be denoted by A, that of the cylindrical element by A'
and the area of a tube section by A". Let these areas by such that

A A • A' (2. 3)

Then quasi-homogeneity implies that mean values of stresses and strains

arc the same in A and A' and moreover, that this holds independently of the
lcation of the A' element.

The area A' is now chosen as unit area, then the A' element becomes

one of unit volume and will, in the following, be referred to as the unit element.

(+) Plane strain assumptions apply in the case of a very long, cylindrical

body. The cylinder of unit thickness considered here may be regarded
as a typical element of such a long cylinder.

(++) Since the curved cylinder surface is of constant unit height. It is com-

pletely defined by the curve C and thus will be denoted by C in the following.
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By the assumption of homogeneity and isotropy in the x2 , x 3 plane, the strain
energy stored in the unit element, which is accordingly the strain energy den-
sity for the composite, will be assumed to be representable in the forms

W*(Oi -- _1 + sJii s°i (2.4)

2K 4G
W2(&) = K E e (.)

i i 13

Here the stresses and strains have been split into isotropic and deviatoric

parts as follows

Sij si (Z. 6)

0 0
S j + e.i (2. 7)

where

0- 00 -0-kk (2.8)

0 = (2. 9)

2 kk

It should be recalled that the range of the subscripts is 2, 3. A repeated
subscript denotes summation and • are the Kronecker delta. The quan-
tities and G". are the effective bulk Ind shear moduli, respectively, of
the composite. The bulk modulus K' for the present plane strain situation
is given by +(.

K + G (2. 10)

where A is the Lame modulus. (ref. 14)

It follows from the preceding that if the strain energy density of the com-
posite can be computed by some means, in terms of the elastic moduli and
volume fractions of tubes and matrix, then the effective elastic moduli can
be determined from (2. 4) and (2. 5). However, calculation of the strain energy
would require a detailed solution for the stresses or displacements in the com-
posite under prescribed surface tractions or displacements, which seems to
be an intractable problem.

In the present approach, this problem will be avoided and instead, bounds
for the strain energy density, and thus for the effective elastic moduli, will
be derived by use of the variational principles of the theory of elasticity.

Consider an elastic body of volume V and surface S (+) with prescribed
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surface tractions u 0 (S) and let U be the actual strain energy stored in this
body. Consider any displacement field ui which satisfies the boundary con-
ditions and necessary continuity requirements (2. 2). Such a displacement
usually called admissible. The "energy' U (6e) is defined by:

f W (2K 9 + G'ij7P) dV (2.11)

where the strains ij are derived from the ui by

Seij -2 , Ui j + j, i) (2z.12)z

and have been split into isotropic and deviatoric parts (compare 2. 7) when
used in (2. 11). K and G are the elastic moduli of the body, which need not
be constant in space.

The principle of minimum potential energy can, in the present case, be
expressed by the inequality

U -( (2. 13)

where the equality sign would hold if, and only if, `ui is the actual displace-
ment field, satisfying also equilibrium.

For minimum complementary energy, consider an elastic body with pre-

scribed surface tractions. Define an admissible stress system as one which
satisfies the boundary and equilibrium conditions. Let such a stress system
be denoted by Orij and the"energy" U be defined by

U = V) + sii_ 5Ji) dV (2.14)2K, 4 C

where, again, isotropic and deviatoric components of the 6.. have been used
and the elastic constants may be variable in space. The prinliple of minimum
complementary energy can then be written in the form

I U -- :. ( ) (2,15)

where U •is again the actual strain energy and equality holds if, and only if,
the 5 .. also satisfy necessary compatibility conditions.

---- --------- ------------------------------- ------------------------

j (+) For present application, the body is a cylinder in plane strain. The
surface S is the curved cylinder surface C. As long as plane strain
conditions are satisfied, the cylinder bases A need not be incorporated
in S.
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The main problem in the application of the variational principles is the
suitable choice of admissible stress and displacement fields. These will be
chosen in the following way.

Let it be assumed, for example, that a plane traction system of form
(2. 1) parallel to the x , x3 plane, is applied to the surface of a cylinder of
composite material. et this cylinder be subdivided into composite cylin-
ders each of which contains one tube (Fig. A-3). Furthermore, the ratio of
fiber volume to binder volume is the same in all composite tubes. Such a
subdivision into composite tubes can be carried out in an infinity of ways and
it will here be assumed that this has been done so that the transverse sec-
tions approach circles as nearly as possible.

Assume that a set of boundary displacements of the form (2. 2) is ap-
plied to all the surfaces of the composite cylinders and thus also to the outer
surface C of the large cylinder since this surface consists of parts of com-
posite cylinder surfaces. If the displacement fields in all composite cylin-
ders are found, subject to these boundary conditions, then all these fields
will co stitute an admissible displacement field for the whole composite
body.

In order to find an admissible stress field, assume that tractions of the
form (Z. 1) are applied to all composite cylinder surfaces. If now the stresses
in all composite cylinders are found, subject to these boundary conditions,

then all these stress fields will satisfy boundary conditions and equilibrium
Sfor the whole coin-pusite cylindrical body and will thus constitute an admis-

sible field.

Such a solution can obviously not be carried out for arbitrary sections
of composite cylinders and it will accordingly be assumed that each composite
cylinder can be approximated by a tubular fiber surrounded by a concentric
cylindrical shell of binder material so that volumes are preserved. (Fig. A-3)

In order to obtain separate bounds for the bulk and shear modulus of the
composite, it will be found convenient to separate stresses and strains in

(+) The total displacement field will thus be made up of different parts in
different regions. At region interfaces continuity of the displacement
vector *ill have to be satisfied. It can be shown that the principle of
minimum potential energy holds for such a displacement field. Simi-
larly, the principle of minimum complementary energy can be extended
to the case of different stress fields in different regions, when the trac-

tions are continuous across the region interfaces.
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(2. 1) and (2. 2) into isotropic and deviatoric components and apply the two parts
of tractions and displacements thus found separately. This will be done in
the following.

It should be borne in mind that because of the idealization of the compo-
site element to circular cylindrical shape, the bounds derived will be of an
approximate nature.

3. Effective Transverse Bulk Modulus K"

According to the procedure outlined above, a traction system in the x2,

x 3 plane of the form

oT9 = o'ni (3. 1)

associated with the isotropic stress system

0= oG0 . (3.2)ij ij

is applied to C and accordingly to all the surfaces of the composite cylinders
where it assumes the form

0 0
= (3. 3)rr

in cylindrical coordinates.

A radially symmetric plane strain problem for the circular composite
cylinder is thus defined. The general solution to such a problem is well
known and can be written down in the following form

b Bb
"u = A r + - (3.4)r b r

S.rf S r : rb

B
b Bb
rr = bb ZG b 2  (3.5)

f Bf

u = Ar + - (3. 6)
r f _rrr r

f Bf 0

Crrr = KfA 1 ZGfB- (3.7)
rr f f
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Here b refers to binder and f to tubular fiber, ur and 0- are radial dis-
placement and radial stress respectively, Ab, Bb, Af, and f are arbitrary
constants and the different radii are indicated inl'ig. A-3.

The boundary conditions to be satisfied are
ob o

r = " , r = r (3. 8)
rr b

Ur = r (3. 9)

b f r
Srr J(3. 10)rr rr

f
= r = r (3. 11)

The four boundary conditions expressed in terms of (3.4 -7) give a set
of four linear equations for the arbitrary constants. The solution is thus com-
pletely defined.

The strain energy stored in the composite cylinder is then given by

(Cr) Obbrr rb d ( (3. 12)

which in the present radially symmetric case simplifies to
(0" 7Trb Ub (rb) 6brr :rb) (3. 13)

Uc =

From the solution of the boundary value problem, ub r (rb) is found to be

ub (rb) -I - .. . . . 14

I Here r(So ro (3. 15)
Srf

)V ( )2 (3. 16)S, rb

= 
(3. 17)

!14b
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I
and "Vf and -/b are the Poisson's ratios of fiber and binder materialsI respectively.

Under the present assumptions, the complementary energy for the com-
posite is then given by

- (C' a) (3. 18)

where the summation extends over all composite cylinders and ub (rb) and
Li Orr(')) (rb) in (3. 13) are given by (3. 14) and (3. 8) respectively.

SThe actual strain energy stored in the composite material, when (3. 1)
is applied to the boundary, is given, with the use of (2.4) by

2
u ._o" v (3. 19)t2K

where V is the total volume including binder, tubular fibers and their inner
voids. Writing (3. 18) in the form

U• - V (3. 20)

and introducing (3.19) and (3. 20) into (2. 15), Rl becomes a lower bound
for K" and is found to be

K"i Kva7) (3. 21)

In order to find an upper bound for tR the composite material is in-
i vestigated for a surface displacement of the form

0 0

where k 0 . is the isotropic part of the strains associated with (2. 2). In
order to get a admissible displacement system, it is assumed that all com-
posite circular cylinders, defined above, are subjected to a surface displace-
ment of the form (3. 22) with respect to a coordinate system x , x 3 in the
transverse plane, common to all the tubes.

If (3. 22) is transformed to a local coordinate system whose origin is at
the center of a tubular fiber, it becomes a surface displacement at r = rb,
of the form (3. 22) and a rigid body displacement which does not contribute
to the stresses. Accordingly, only the boundary value problem of a compo-
site cylinder with surface displacement (3. 22), with respect to its axis, needs
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to be considered.

In polar co-ordinates, (3. 22) assumes the form

uo (rb) = °rb (3. 23)
r b

The boundary value problem to be solved is now analogous to the one con-
sidered above. The only change is replacement of (3. 8) by (3. 23). The dis-
placement fields in all composite cylinders, resulting from th'is boundary value
problem, form an admissible displacement field for the composite material.

The eneggy, U , stored ir. a composie cylinder, is again given by (3.13).
At present ur (r ) Fe given by (3. i3) and ' (r s given from the displace-

rb gieb(3r)n b)d
rnent boundary value problem by

b o- _/t 4-_(1_V ___

rr bb + (3.24)

The energy U is now computed by

S= u (3.25)
p

and is then set equal to

-6 oZ (3.26)
U =2K 6 V(3Z6

J According to (2. 5), U" can be written as

U =ZKf V (3.27)

whence introducing (3.26 and (3. 27) into (2.13), X* becomes an upper bound
2-for K*. Carrying out the calculation it is found that K*2 is also given by (3. 21).

Hence the lower and upper bounds coincide and the effective bulk modulus is
also given by (3. 21).

It should be realized that this does not mean that an exact result for the
effective bulk modulus has been found because of the replacement of composite
cylinders of arbitrary cross sections by circular ones. However, it is to be
expected that (3. 21) should be a good approximation for K*.

A similar method employed in a three dimensional case (ref. 13) has yielded
results which checked well with experimental measurements.
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4. Bounds for the Effective Shear Modulus G"

The method to be used is essentially the same as for the bulk modulus.
However, the mathematical difficulties encountered are much more serious
and it will not be possible to give results in closed form. Also, the bounds
obtained for the shear modulus do not generally coincide.

0

Let tractions T?, derived from a pure shear stress in the x2 , x3 plane,
be applied to the surface C of the large cylinder (Fig. A-2). Such a traction
system can be given in the form

0 0T* = •°n 3
0-2 3(4. 1)

•3 = n2

where -" is the shear stresss and n2 and n are the components of the unit
outward normal to C.

According to the present interpretation of quasi-homogeneity and quasi-
isotropy, the strain energy stored in the cylinder car be expressed with the
aid of (2. 4) in the form

U*-a) v (4.2)
2G

0-g
Analogously, a displacement u°, associated with a pure shear strain AT- in
the x2 , x 3 plane, is applied to C. Such a displacement has the form

2 2 3

(4. 3)
u0 -Y-o X

3 2 2

and the strain energy stored in the cylinder can then be given, with the aid of
(2. 5), in the form,

U* V (4.4)
2

In order to derive a lower bound for the effective shear modulus, the

tractions (4. 1) are applied to the surfaces of all composite cylinders. The
boundary value problem for the composite circular cylinder is then as follows:
Solve the plane systems of differential ..ýquations of the theory of elasticity.

b 2 b
u (-2/) V u = 0 in R (4.5)
j,ji b i b
f Zf

U. (-ZV) u. 0 in R (4.6)i ji+ 1/) if
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where u and uf are the displacement components in binder and fiber respec-
tively, ¶72 denotes the Laplace operator in the x2, X3 plane, Rb is the binder
region rrf S r :!. rb and Rf is the fiber region ro • r - rf.

The solution must satisfy the following boundary conditions:

b oT. Ti r rb (4.7)
1 f

u. = u." (4.8)
1 1

b f r (49)
T ==

T T (4.9)

T 0 r = r (4.10)
1 0

b fHere Tb and T.f are the tractions in binder and matrix, respectively,0* 1

is given by (4. 1), eqs. (4. 8-9) are continuity conditions at binder-fiber
interface and (4. 10) expresses the fact that the fiber contains an unloaded

void. In order to find an upper bound, the displacements (4. 3) are applied
to the surfaces of the composite cylinders. The boundary value problem for
the circular composite cylinder has then to be modified only by replacement
of (4. 7) by

S b o

u. = u. (4. 11)

where u° is given by (4. 3).

S~These two boundary value problems can be solved exactly and in closed

form in terms of plane harmonics. The solution is outlined in the following
section. Here, only the results which are needeýd for the establishment of
bounds will be given.

Having found the solutions for the circular composite cylinder, the bounds

for the effective shear modulus can be found by exactly the same method used

for the bulk modulus in Section 3. The strain energy stored in a composite
circular cylinder is evaluated for both boundary value problems and is summed
over all composite c I'nders. These energies are then used in inequalities
(2. 13) and (2. 15) as U and ( The energy U' is in one case given by
(4. 2) and in the other by (4. 4). Thus, a lower and upper bound are obtained.

These bounds are given in the following form:

G = (4. 12)

I A
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• 2(l.-Vb)4q 7 • -
S(4. 13)

1 Vb

where A4 and A4 are defined by systems of equations (20-29) in section (5)
The effective shear modulus G satisfies the inequality

G G* G* (4.14)S1 2

5. Problem of Sheared Composite Cylinder

In order to derive bounds for the shear modulus, it is necessary to solve
the boundary value problem given by (4. 5-10) and the one where (4. 7) is re-
placed by (4. 11).

A general formulation for elastic plane strain problems is provided by the
method of complex functions, however, in the present case it is more conveni-
ent to use another method of solution, in terms of plane harmonics. Plane
harmonic functions are defined as homogeneous polynomials which satisfy the
two dimensional Laplace equation. The two dimensional ring problem can be

solved in general with the aid of such functions (ref. 8-15). It [nay be shown
that in the present case, the solution for the displacement vector can be given
in terms of the plane harmonic x x in the following form:

u A u +Au+ A -I -Au (5.1)
1 2 +A3 u 4

where

u = grad (x x3) (5.2)

u = r grad (x2 x3 ) , 2 xx 3 r (5. 3)2 3- "-223

u = grad ( ) (5.4)
rr-

- r2 grad ( 2~3 + r( (5. 5)
rip 2 0

Here

r 2 x 2 + x3  (5. 6)

-2 -3 - 4V (5. 7)
t 2 3 - 2V

-2 2 (5.8)
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where -V is the Poisson's ratio. The solutions for the binder ring and the
fiber ring are obtained by substituting the appropriate Poisson's ratios. The
solution for the composite tube thus involves eight arbitrary constants which
have to be determined from the boundary conditions of the problem. In order
to do this the displacements and tractions have to be given in detail.

The dimensional constants in (1) are first replaced by the nondimensional
constants

A = A (5.9)

A = Ar (5. 10)
2f

A
A 3  4 (5. 11)

r it A4_
A4 - (5. 1Z)

r f

A straight forward calculatiun then yields the following displacements.
In the binder

2 (A + 2+ 3 4) x3

b + 41/b 2 4 _ -2

(5. 13)
Here (is given by

' r (5. 14)

b.and the displacement component u in x3 direction is simply obtained by
interchanging x, and x in (13).

The displacements in the fiber are given by:

u = ( + 2 + B + "2B4xB (B B 3  ( 4  x 3

(-2 3-4 fB 4 -4 "4B + r2 2B )23 -z f 2V 2 3 Z". f{ ' 4 xzx

(5.15)
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f
where, again, u3 is defined by co-ordinate interchange.

The strains can now be computed by differentiation of the displacements,
whence the stresses can be found from Hooke's law. The tractions on a circle
are defined in terms of the stresses by

T. = (5. 16)
1 r

where xj are the co-ordinates of a point on the circle of radius r.

I Accordingly, the tractions on a circle in the binder have the form

b 3 2 - 4 1 -2 xT 2 G (A +-- A -3 A +--:- A4) -3.~2 b 1 3 .Vb' r31. 12 b( 4 r

b 1_
+ 12G A + 2 - 1 ~A ) x

b 3 Vb2 3(Ab 4 r

where the other traction component Tf is found from (5. 17) by co-ordinate
interchange. The tractions in the fiber can be written down by replacing Gb
and Vb by Gf and V. and the A's by the B's.

In the foregoing solution, each displacement and traction component con-

tains two co-ordinate functions. Thus, fulfillment of a boundary condition on
a circle will yield equations for the coefficients of these functions, which in-

f volve the unknown constants. It should be realized, from the form of these
j expressions, that if a boundary condition is satisfied for one component of a

displacement or traction, the same condition is automatically satisfied for
the other component. Since in each boundary value problem there are four
boundary conditions, eight linear equations for the unknown constants will be
obtained in each case, which is exactly the required number. These equations
will now be given for each boundary value problem. For convenience, the
unknown constants are redefined. For the stress boundary value problem
define

A.('),B.(') 2GbAF B - _ b6- (Ai, Bi) i = 1,2,3,4 (5. 18)

where IC° is defined by (4. 1).

For the displacement boundary value problem define

A . , B - 2 (Ai. B.) i = 1,2,3,4 (5. 19)

where -60 is defined by (4. 3).
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Each pair of these equations is derived from one boundary condition and the
order of equations corresponds to the order of the boundary conditions (4. 7-10).

For the displacement problem, (4.11) is prescribed at r = r Conse-
quently, only eqns. (20) and (21) change. They have to be replace by

A•S + V• A•f)Vr + 3 # 4 (5.2Z8)

3 _- A 2 _2_AIE ) + -1
3 - 2-Y b 2 t 3 1 -2;b t (5.29)

whereas the coefficients in the other six equations are the same as in (5. 22 -
5. 27).

i The solution for solid fiber inclusions is readily obtained from theabove solution. The boundary condition (4.10) is deleted and the associated
constants B 3 and B 4 are zero. Consequently, the boundary condition equa-tions 5. 26 and 5. 27 do not exist. The result is a set of six simultaneous
linear equations and again the resulting values of A 4 and A4 are used in
eqs. 4.12 and 4.13 to define G*.

i

[
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Key to Nomenclature

A Area

d Diameter

E Young's modulus of elasticity

G Shear modulus of elasticity

K Bulk modulus of elasticity

K Bulk modulus of elasticity in plane strain

I Fiber length

M Ratio of moduli of hollow fiber to solid fiber composites

N Ratio of densities of hollow fiber to solid fiber composites

P Force

r Radius

r Void radius

r Fiber radius

s Deviatoric stress

T Traction

u Displacement

j U Strain energy

v Volume fraction of constituent relative to total composite

v Volume fraction of voidsVb

vb - Volume fraction of binder material
.vb

Svf Volume fraction of fiber material

vt Volume fraction of fiber tubes: vt = vf +vo

wb Weight fraction of binder material

w Weight fraction of fiber material
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Fiber radius ratio = o/rf

6 Strain

V • Poisson's ratio

V.. Poisson's ratio for anisotropic material, negative of ratio of strain
' in i direction to strain in j direction for stress in j direction.

9 Lamina orientation angle

7 • Ratio of structural efficiencies of hollow to solid fiber reinforced
composites

A • Angle between principal axis and loading direction

Specific weight

C" Stress

r Foundation modulus

Ratio of plane strain bulk moduli of fiber to binder

/IA Ratio of shear moduli of fiber to binder

I Subscripts

a air

b binde r

c composite

cr critical

f fiber

g glass

h hollow fiber composite

mb micro-buckling

o void

Is solid fiber composite
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t tension or tube

v void

z axial direction

S1 in fiber direction

1 2 normal to fiber direction

3 normal to 1 and 2 directions

Superscript* indicates effective elastic constants

1
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